Noether's theorem for fractional variational problems of variable order

被引:60
作者
Odzijewicz, Tatiana [1 ]
Malinowska, Agnieszka B. [2 ]
Torres, Delfim F. M. [1 ]
机构
[1] Univ Aveiro, Dept Math, Ctr Res & Dev Math & Applicat, P-3810193 Aveiro, Portugal
[2] Bialystok Tech Univ, Fac Comp Sci, PL-15351 Bialystok, Poland
来源
CENTRAL EUROPEAN JOURNAL OF PHYSICS | 2013年 / 11卷 / 06期
关键词
variable order fractional integrals; variable order fractional derivatives; fractional variational analysis; Euler-Lagrange equations; Noether's theorem; FORMULATION; MECHANICS; CALCULUS; DYNAMICS; ENERGY;
D O I
10.2478/s11534-013-0208-2
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We prove a necessary optimality condition of Euler-Lagrange type for fractional variational problems with derivatives of incommensurate variable order. This allows us to state a version of Noether's theorem without transformation of the independent (time) variable. Considered derivatives of variable order are defined in the sense of Caputo.
引用
收藏
页码:691 / 701
页数:11
相关论文
共 40 条
[1]   Generalized variational calculus in terms of multi-parameters fractional derivatives [J].
Agrawal, Om P. ;
Muslih, Sami I. ;
Baleanu, Dumitru .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2011, 16 (12) :4756-4767
[2]   Calculus of variations with fractional derivatives and fractional integrals [J].
Almeida, Ricardo ;
Torres, Delfim F. M. .
APPLIED MATHEMATICS LETTERS, 2009, 22 (12) :1816-1820
[3]  
[Anonymous], 2011, FRACTIONAL CALCULUS, DOI DOI 10.1007/978-94-007-0747-4
[4]   HAMILTON'S PRINCIPLE WITH VARIABLE ORDER FRACTIONAL DERIVATIVES [J].
Atanackovic, Teodor M. ;
Pilipovic, Stevan .
FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2011, 14 (01) :94-109
[5]   Variational problems with fractional derivatives: Invariance conditions and Nother's theorem [J].
Atanackovic, Teodor M. ;
Konjik, Sanja ;
Pilipovic, Stevan ;
Simic, Srboljub .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2009, 71 (5-6) :1504-1517
[6]   Lagrangian formulation of classical fields within Riemann-Liouville fractional derivatives [J].
Baleanu, D ;
Muslih, SI .
PHYSICA SCRIPTA, 2005, 72 (2-3) :119-121
[7]   Lagrangians with linear velocities within Riemann-Liouville fractional derivatives [J].
Baleanu, D ;
Avkar, T .
NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA B-BASIC TOPICS IN PHYSICS, 2004, 119 (01) :73-79
[8]  
Baleanu D., 2012, Fractional calculus: models and numerical methods
[9]   NECESSARY OPTIMALITY CONDITIONS FOR FRACTIONAL DIFFERENCE PROBLEMS OF THE CALCULUS OF VARIATIONS [J].
Bastos, Nuno R. O. ;
Ferreira, Rui A. C. ;
Torres, Delfim F. M. .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2011, 29 (02) :417-437
[10]  
Caponetto R., 2010, Modeling and control applications