Sasaki-Einstein and paraSasaki-Einstein metrics from (κ, μ)-structures

被引:34
作者
Cappelletti-Montano, Beniamino [1 ]
Carriazo, Alfonso [2 ]
Martin-Molina, Veronica [2 ]
机构
[1] Univ Cagliari, Dipartimento Matemat & Informat, I-09124 Cagliari, Italy
[2] Univ Seville, Dept Geometria & Topol, E-41080 Seville, Spain
关键词
Sasakian; ParaSasakian; (kappa; mu)-spaces; eta-Einstein; Lorentzian-Sasakian; Tangent sphere bundle; RIEMANNIAN-MANIFOLDS; CONTACT; PARACONTACT;
D O I
10.1016/j.geomphys.2013.05.001
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove that every contact metric (kappa, mu)-space admits a canonical eta-Einstein Sasakian or eta-Einstein paraSasakian metric. An explicit expression for the curvature tensor fields of those metrics is given and we find the values of kappa and mu for which such metrics are Sasaki-Einstein and paraSasaki-Einstein. Conversely, we prove that, under some natural assumptions, a K-contact or K-paracontact manifold foliated by two mutually orthogonal, totally geodesic Legendre foliations admits a contact metric (kappa, mu)-structure. Furthermore, we apply the above results to the geometry of tangent sphere bundles and we discuss some geometric properties of (kappa, mu)-spaces related to the existence of Einstein-Weyl and Lorentzian-Sasaki-Einstein structures. (C) 2013 Elsevier B.V. All rights reserved.
引用
收藏
页码:20 / 36
页数:17
相关论文
共 31 条
[1]   Structures on generalized Sasakian-space-forms [J].
Alegre, Pablo ;
Carriazo, Alfonso .
DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS, 2008, 26 (06) :656-666
[2]   Cones over pseudo-Riemannian manifolds and their holonomy [J].
Alekseevsky, D. V. ;
Cortes, V. ;
Galaev, A. S. ;
Leistner, T. .
JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2009, 635 :23-69
[3]  
[Anonymous], 1997, MONOGRAPHS MATH
[4]  
[Anonymous], 1976, TOHOKU MATH J, DOI DOI 10.2748/TMJ/1178240777
[5]  
[Anonymous], 1991, Differential Geom. Appl., DOI DOI 10.1016/0926-2245(91)90022-2
[6]  
Baum H, 2000, SEMIN C, V2000, P35
[7]  
Blair D. E., 2010, RIEMANNIAN GEOMETRY
[9]   CONTACT METRIC MANIFOLDS SATISFYING A NULLITY CONDITION [J].
BLAIR, DE ;
KOUFOGIORGOS, T .
ISRAEL JOURNAL OF MATHEMATICS, 1995, 91 (1-3) :189-214
[10]   A full classification of contact metric (k, μ)-spaces [J].
Boeckx, E .
ILLINOIS JOURNAL OF MATHEMATICS, 2000, 44 (01) :212-219