Comprehensive assessment of the printability of CoNiCrFeMn in Laser Powder Bed Fusion

被引:55
|
作者
Dovgyy, Bogdan [1 ]
Piglione, Alessandro [1 ]
Hooper, Paul A. [2 ]
Pham, Minh-Son [1 ]
机构
[1] Imperial Coll London, Dept Mat, London SW7 2AZ, England
[2] Imperial Coll London, Dept Mech Engn, London SW7 2AZ, England
基金
英国工程与自然科学研究理事会;
关键词
Additive manufacturing; Laser Powder Bed Fusion; High entropy alloy; 3D print; Texture; Mechanical properties; MECHANICAL-PROPERTIES; CRYSTALLOGRAPHIC TEXTURE; MICROSTRUCTURE EVOLUTION; ALLOY; ANISOTROPY;
D O I
10.1016/j.matdes.2020.108845
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
This study assesses the printability including the consolidation, solidification microstructure, and mechanical properties of the CoCrFeMnNi high entropy alloy fabricated by Laser Powder Bed Fusion. A range of print parameters was used for a comprehensive assessment of printability, providing a basis to establish the relationship between process, microstructure, and mechanical properties. The study demonstrates a high relative density of the alloy fabricated with energy density in the range 62.7-109.8 J/mm(3). It is shown that the scan strategy plays an important role in consolidation. For the same energy density, the rotation of 67 degrees between two consecutive layers tends to yield higher consolidation than other considered strategies. Moreover, the scan strategy is found to be most influential in microstructure development. The scan strategy rotation angle controls the extent to which epitaxial growth can occur, and hence the crystallographic texture and the grain morphology. Amongst four considered strategies, the 0 degrees and 90 degrees-rotation meander led to the strongest preferred texture while the 67 degrees-rotation resulted in weaker texture. The 67 degrees-rotation strategies led to broadened grains with lower aspect ratios. The understanding of texture and grain size provides explanations to the observed mechanical properties (such as flow stress and plastic anisotropy) of the alloy. (C) 2020 Published by Elsevier Ltd.
引用
收藏
页数:16
相关论文
共 50 条
  • [31] The three-prong method: a novel assessment of residual stress in laser powder bed fusion
    Sillars, S. A.
    Sutcliffe, C. J.
    Philo, A. M.
    Brown, S. G. R.
    Sienz, J.
    Lavery, N. P.
    VIRTUAL AND PHYSICAL PROTOTYPING, 2018, 13 (01) : 20 - 25
  • [32] Effects of post-processing route on fatigue performance of laser powder bed fusion Inconel 718
    Ardi, Dennise Tanoko
    Guowei, Lim
    Maharjan, Niroj
    Mutiargo, Bisma
    Leng, Seng Hwee
    Srinivasan, Raghavan
    ADDITIVE MANUFACTURING, 2020, 36
  • [33] Austenite Reversion Behavior of Maraging Steel Additivemanufactured by Laser Powder Bed Fusion
    Takata, Naoki
    Ito, Yuya
    Nishida, Ryoya
    Suzuki, Asuka
    Kobashi, Makoto
    Kato, Masaki
    ISIJ INTERNATIONAL, 2024, 64 (02) : 303 - 315
  • [34] DESIGN AND PRINTABILITY EVALUATION OF HEAT EXCHANGERS FOR LASER POWDER BED FUSION PROCESS
    Liang, Xuan
    White, Lisha
    Cagan, Jonathan
    Rollett, Anthony D.
    Zhang, Yongjie Jessica
    PROCEEDINGS OF ASME 2022 INTERNATIONAL DESIGN ENGINEERING TECHNICAL CONFERENCES AND COMPUTERS AND INFORMATION IN ENGINEERING CONFERENCE, IDETC-CIE2022, VOL 3A, 2022,
  • [35] Printability and properties of tungsten cemented carbide produced using laser powder bed fusion additive manufacturing with Ti as a binder
    Sa, Bo
    Lu, Songhe
    Gong, Pan
    Wang, Dawei
    Dong, Yangping
    Cheng, Junye
    Ren, Guanhui
    Yan, Ming
    INTERNATIONAL JOURNAL OF REFRACTORY METALS & HARD MATERIALS, 2023, 111
  • [36] Melt Pool characteristics on surface roughness and printability of 316L stainless steel in laser powder bed fusion
    Zhang, Tianyu
    Yuan, Lang
    RAPID PROTOTYPING JOURNAL, 2024,
  • [37] Laser Powder Bed Fusion of GH3536 Alloy
    Min Shiling
    Hou Juan
    Zhang Kai
    Huang Aijun
    LASER & OPTOELECTRONICS PROGRESS, 2021, 58 (17)
  • [38] Laser Powder Bed Fusion of Dissimilar Metal Materials: A Review
    Guan, Jieren
    Wang, Qiuping
    MATERIALS, 2023, 16 (07)
  • [39] Probabilistic predictive control of porosity in laser powder bed fusion
    Nath, Paromita
    Mahadevan, Sankaran
    JOURNAL OF INTELLIGENT MANUFACTURING, 2023, 34 (03) : 1085 - 1103
  • [40] Laser Powder Bed Fusion of Stainless Steel Grades: A Review
    Zitelli, Chiara
    Folgarait, Paolo
    Di Schino, Andrea
    METALS, 2019, 9 (07)