Comprehensive assessment of the printability of CoNiCrFeMn in Laser Powder Bed Fusion

被引:55
|
作者
Dovgyy, Bogdan [1 ]
Piglione, Alessandro [1 ]
Hooper, Paul A. [2 ]
Pham, Minh-Son [1 ]
机构
[1] Imperial Coll London, Dept Mat, London SW7 2AZ, England
[2] Imperial Coll London, Dept Mech Engn, London SW7 2AZ, England
基金
英国工程与自然科学研究理事会;
关键词
Additive manufacturing; Laser Powder Bed Fusion; High entropy alloy; 3D print; Texture; Mechanical properties; MECHANICAL-PROPERTIES; CRYSTALLOGRAPHIC TEXTURE; MICROSTRUCTURE EVOLUTION; ALLOY; ANISOTROPY;
D O I
10.1016/j.matdes.2020.108845
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
This study assesses the printability including the consolidation, solidification microstructure, and mechanical properties of the CoCrFeMnNi high entropy alloy fabricated by Laser Powder Bed Fusion. A range of print parameters was used for a comprehensive assessment of printability, providing a basis to establish the relationship between process, microstructure, and mechanical properties. The study demonstrates a high relative density of the alloy fabricated with energy density in the range 62.7-109.8 J/mm(3). It is shown that the scan strategy plays an important role in consolidation. For the same energy density, the rotation of 67 degrees between two consecutive layers tends to yield higher consolidation than other considered strategies. Moreover, the scan strategy is found to be most influential in microstructure development. The scan strategy rotation angle controls the extent to which epitaxial growth can occur, and hence the crystallographic texture and the grain morphology. Amongst four considered strategies, the 0 degrees and 90 degrees-rotation meander led to the strongest preferred texture while the 67 degrees-rotation resulted in weaker texture. The 67 degrees-rotation strategies led to broadened grains with lower aspect ratios. The understanding of texture and grain size provides explanations to the observed mechanical properties (such as flow stress and plastic anisotropy) of the alloy. (C) 2020 Published by Elsevier Ltd.
引用
收藏
页数:16
相关论文
共 50 条
  • [1] Printability assessment with porosity and solidification cracking susceptibilities for a high strength aluminum alloy during laser powder bed fusion
    Cao, Y.
    Wei, H. L.
    Yang, T.
    Liu, T. T.
    Liao, W. H.
    ADDITIVE MANUFACTURING, 2021, 46
  • [2] Laser Powder Bed Fusion of Powder Material: A Review
    Zhao, Xi
    Wang, Tong
    3D PRINTING AND ADDITIVE MANUFACTURING, 2023, 10 (06) : 1439 - 1454
  • [3] Printability and microstructural evolution of Ti-5553 alloy fabricated by modulated laser powder bed fusion
    Bakhshivash, S.
    Asgari, H.
    Russo, P.
    Dibia, C. F.
    Ansari, M.
    Gerlich, A. P.
    Toyserkani, E.
    INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY, 2019, 103 (9-12) : 4399 - 4409
  • [4] Assessing the factors underlying the high yield strength of laser powder bed fusion processed niobium
    Chesetti, Advika
    Banerjee, Sucharita
    Krishna, K. V. Mani
    Soni, Vishal
    Varahabhatla, S. M.
    Sharma, Abhishek
    Mantri, Srinivas Aditya
    Nartu, M. S. K. K. Y.
    Dahotre, Narendra B.
    Banerjee, Rajarshi
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2024, 910
  • [5] An efficient framework for printability assessment in Laser Powder Bed Fusion metal additive manufacturing
    Zhang, Bing
    Seede, Raiyan
    Xue, Lei
    Atli, Kadri C.
    Zhang, Chen
    Whitt, Austin
    Karaman, Ibrahim
    Arroyave, Raymundo
    Elwany, Alaa
    ADDITIVE MANUFACTURING, 2021, 46
  • [6] Laser powder bed fusion of pure copper electrodes
    Aghayar, Yahya
    Moazzen, Parisa
    Behboodi, Behrang
    Shahriari, Ayda
    Shakerin, Sajad
    Lloyd, Alan
    Mohammadi, Mohsen
    MATERIALS & DESIGN, 2024, 239
  • [7] Laser Powder Bed Fusion of Potential Superalloys: A Review
    Cobbinah, Prince Valentine
    Nzeukou, Rivel Armil
    Onawale, Omoyemi Temitope
    Matizamhuka, Wallace Rwisayi
    METALS, 2021, 11 (01) : 1 - 37
  • [8] A comprehensive literature review on laser powder bed fusion of Inconel superalloys
    Volpato, Guilherme Maziero
    Tetzlaff, Ulrich
    Fredel, Marcio Celso
    ADDITIVE MANUFACTURING, 2022, 55
  • [9] Laser powder bed fusion of a non-equiatomic FeNiCoAl-based high- entropy alloy: Printability, microstructure, and mechanical properties
    Sun, Qinyao
    Du, Dafan
    He, Lin
    Dong, Anping
    Zhang, Cheng
    Sun, Baode
    JOURNAL OF ALLOYS AND COMPOUNDS, 2023, 938
  • [10] Laser Powder Bed Fusion for Fabrication of Metal Orthopedic Implants
    Yin Bangzhao
    Qin Yu
    Wen Peng
    Zheng Yufeng
    Tian Yun
    CHINESE JOURNAL OF LASERS-ZHONGGUO JIGUANG, 2020, 47 (11):