SOLUTIONS AND THERMODYNAMICS OF NONCOMMUTATIVE LIOUVILLE BLACK HOLE

被引:8
作者
Belhaj, A. [1 ,2 ,3 ]
Bilal, K. [1 ]
El Boukili, A. [1 ]
Nach, M. [1 ]
Sedra, M. B. [1 ]
机构
[1] Univ Ibn Tofail, Fac Sci, Dept Phys, LHESIR, Kenitra, Morocco
[2] CPM CNESTEN, Ctr Phys & Math, Rabat, Morocco
[3] Ctr Natl Energie Sci & Tech Nucl, Rabat, Morocco
关键词
Black holes; strings; noncommutative geometry; ATTRACTORS;
D O I
10.1142/S0219887813500096
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Motivated by string theory results, we study Liouville black hole solutions and their thermodynamics on noncommutative space. In particular, we present explicit solutions of black hole equations of motion, then we find their classical properties such as the ADM-mass, the horizon geometry and the scalar Ricci curvature. Thermodynamic properties of such noncommutative black hole solutions including the Hawking temperature and entropy function are also discussed for three different regions of the moduli space of the theory.
引用
收藏
页数:16
相关论文
共 30 条
[21]   LIOUVILLE BLACK-HOLES [J].
MANN, RB .
NUCLEAR PHYSICS B, 1994, 418 (1-2) :231-256
[22]   Aspects of noncommutative (1+1)-dimensional black holes [J].
Mureika, Jonas R. ;
Nicolini, Piero .
PHYSICAL REVIEW D, 2011, 84 (04)
[23]   The event horizon of the Schwarzschild black hole in noncommutative spaces [J].
Nasseri, Forough .
INTERNATIONAL JOURNAL OF MODERN PHYSICS D, 2006, 15 (07) :1113-1117
[24]   Thermodynamics of noncommutative Schwarzschild black hole [J].
Nozari, Kourosh ;
Fazlpour, Behnaz .
MODERN PHYSICS LETTERS A, 2007, 22 (38) :2917-2930
[25]   Black hole attractors and the topological string [J].
Ooguri, H ;
Strominger, A ;
Vafa, C .
PHYSICAL REVIEW D, 2004, 70 (10) :106007-1
[26]   Noncommutative inspired black holes in extra dimensions [J].
Rizzo, Thomas G. .
JOURNAL OF HIGH ENERGY PHYSICS, 2006, (09)
[27]   String theory and noncommutative geometry [J].
Seiberg, N ;
Witten, E .
JOURNAL OF HIGH ENERGY PHYSICS, 1999, (09) :XLII-92
[28]   Non-commutative geometry inspired higher-dimensional charged black holes [J].
Spallucci, Euro ;
Smailagic, Anais ;
Nicolini, Piero .
PHYSICS LETTERS B, 2009, 670 (4-5) :449-454
[29]   Macroscopic entropy of N=2 extremal black holes [J].
Strominger, A .
PHYSICS LETTERS B, 1996, 383 (01) :39-43
[30]   Quantum mechanics and Group theory. [J].
Weyl, H. .
ZEITSCHRIFT FUR PHYSIK, 1927, 46 (1-2) :1-46