Paraxial group

被引:31
作者
Bandres, Miguel A. [1 ]
Guizar-Sicairos, Manuel [2 ]
机构
[1] CALTECH, Pasadena, CA 91125 USA
[2] Univ Rochester, Inst Opt, Rochester, NY 14627 USA
关键词
OPTICAL-SYSTEMS; BEAMS; TRANSFORMATION;
D O I
10.1364/OL.34.000013
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We introduce the paraxial group, the group of symmetries of the paraxial-wave equation and its action on paraxial beams. The transformations, elements of the group, are used to obtain closed-form expressions for the propagation of any paraxial beam through misaligned ABCD optical systems. We prove that any paraxial beam is form-invariant under these transformations. (C) 2008 Optical Society of America
引用
收藏
页码:13 / 15
页数:3
相关论文
共 9 条
[1]  
BANDRES MA, OPT EXPRESS UNPUB, P31909
[2]   Accelerating parabolic beams [J].
Bandres, Miguel A. .
OPTICS LETTERS, 2008, 33 (15) :1678-1680
[3]   Circular beams [J].
Bandres, Miguel A. ;
Gutierrez-Vega, Julio C. .
OPTICS LETTERS, 2008, 33 (02) :177-179
[4]   Cartesian beams [J].
Bandres, Miguel A. ;
Gutierrez-Vega, Julio C. .
OPTICS LETTERS, 2007, 32 (23) :3459-3461
[5]   Airy-Gauss beams and their transformation by paraxial optical systems [J].
Bandres, Miguel A. ;
Gutierrez-Vega, Julio C. .
OPTICS EXPRESS, 2007, 15 (25) :16719-16728
[6]   Generalized Helmholtz-Gauss beam and its transformation by paraxial optical systems [J].
Guizar-Sicairos, Manuel ;
Gutiérrez-Vega, Julio C. .
OPTICS LETTERS, 2006, 31 (19) :2912-2914
[7]  
MILLER W, 1984, SYMMETRY SEPARATION, P31909
[8]  
SHAOMIN W, 1988, PROGR OPTICS, V25, P281
[9]  
WOLF KB, 2004, GEOMETRIC OPTICS PHA, P31909