Archive Management for Dynamic Multi-objective Optimisation Problems using Vector Evaluated Particle Swarm Optimisation

被引:0
|
作者
Helbig, Marde [1 ]
Engelbrecht, Andries P. [1 ]
机构
[1] Univ Pretoria, Dept Comp Sci, ZA-0002 Pretoria, South Africa
关键词
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Many optimisation problems have more than one objective that are in conflict with one another and that change over time, called dynamic multi-objective problems. To solve these problems an algorithm must be able to track the changing Pareto Optimal Front (POF) over time and find a diverse set of solutions. This requires detecting that a change has occurred in the environment and then responding to the change. Responding to the change also requires to update the archive of non-dominated solutions that represents the found POF. This paper discusses various ways to manage the archive solutions when a change occurs in the environment. Furthermore, two new benchmark functions are presented where the POF is discontinuous. The dynamic Vector Evaluation Particle Swarm Optimisation (DVEPSO) algorithm is tested against a variety of benchmark function types and its performance is compared against three state-of-the-art DMOO algorithms.
引用
收藏
页码:2047 / 2054
页数:8
相关论文
共 50 条
  • [1] Solving Dynamic Multi-Objective Problems with Vector Evaluated Particle Swarm Optimisation
    Greeff, Marde
    Engelbrecht, Andries. P.
    2008 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION, VOLS 1-8, 2008, : 2917 - 2924
  • [2] Heterogeneous Dynamic Vector Evaluated Particle Swarm Optimisation for Dynamic Multi-objective Optimisation
    Helbig, Marde
    Engelbrecht, Andries P.
    2014 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), 2014, : 3151 - 3159
  • [3] Influence of the Archive Size on the Performance of the Dynamic Vector Evaluated Particle Swarm Optimisation Algorithm solving Dynamic Multi-objective Optimisation Problems
    Helbig, Marde
    Engelbrecht, Andries
    2015 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), 2015, : 1926 - 1933
  • [4] Analyses of Guide Update Approaches for Vector Evaluated Particle Swarm Optimisation on Dynamic Multi-Objective Optimisation Problems
    Helbig, Marde
    Engelbrecht, Andries P.
    2012 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), 2012,
  • [5] Dynamic Multi-objective Optimisation Using Multi-guide Particle Swarm Optimisation
    Jocko, Pawel
    Ombuki-Berman, Beatrice M.
    Engelbrecht, Andries P.
    2022 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), 2022,
  • [6] Multi-guide particle swarm optimisation archive management strategies for dynamic optimisation problems
    Paweł Joćko
    Beatrice M. Ombuki-Berman
    Andries P. Engelbrecht
    Swarm Intelligence, 2022, 16 : 143 - 168
  • [7] Multi-guide particle swarm optimisation archive management strategies for dynamic optimisation problems
    Jocko, Pawel
    Ombuki-Berman, Beatrice M.
    Engelbrecht, Andries P.
    SWARM INTELLIGENCE, 2022, 16 (02) : 143 - 168
  • [8] Multi-Objective Generation Dispatch Using Particle Swarm Optimisation
    Rani, C.
    Kumar, M. Rajesh
    Pavan, K.
    INDIA INTERNATIONAL CONFERENCE ON POWER ELECTRONIC S, 2006, : 421 - 424
  • [9] Multi-objective dynamic economic emission dispatch using particle swarm optimisation variants
    Mason, Karl
    Duggan, Jim
    Howley, Enda
    NEUROCOMPUTING, 2017, 270 : 188 - 197
  • [10] An improved multi-objective particle swarm optimisation algorithm
    Fu, Tiaoping
    Shang Ya-Ling
    INTERNATIONAL JOURNAL OF MODELLING IDENTIFICATION AND CONTROL, 2011, 12 (1-2) : 66 - 71