Advances in microfluidic cell separation and manipulation

被引:46
作者
Jackson, Emily L. [1 ]
Lu, Hang [1 ]
机构
[1] Georgia Inst Technol, Sch Chem & Biomol Engn, Atlanta, GA 30332 USA
基金
美国国家卫生研究院; 美国国家科学基金会;
关键词
CIRCULATING TUMOR-CELLS; CANCER-CELLS; BLOOD; DEVICE; DEFORMABILITY; POPULATIONS; PLATFORM; CAPTURE; SYSTEM; SORTER;
D O I
10.1016/j.coche.2013.10.001
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Cellular separations are required in many contexts in biochemical and biomedical applications for the identification, isolation, and analysis of phenotypes or samples of interest. Microfluidics is uniquely suited for handling biological samples, and emerging technologies have become increasingly accessible tools for researchers and clinicians. Here, we review advances in the last few years in techniques for microfluidic cell separation and manipulation. Applications such as high-throughput cell and organism phenotypic screening, purification of heterogeneous stem cell populations, separation of blood components, and isolation of rare cells in patients highlight some of the areas in which these technologies show great potential. Continued advances in separation mechanisms and understanding of cellular systems will yield further improvements in the throughput, resolution, and robustness of techniques.
引用
收藏
页码:398 / 404
页数:7
相关论文
共 82 条
  • [1] High-throughput, temperature-controlled microchannel acoustophoresis device made with rapid prototyping
    Adams, Jonathan D.
    Ebbesen, Christian L.
    Barnkob, Rune
    Yang, Allen H. J.
    Soh, H. Tom
    Bruus, Henrik
    [J]. JOURNAL OF MICROMECHANICS AND MICROENGINEERING, 2012, 22 (07)
  • [2] Microfluidic sorting system based on optical waveguide integration and diode laser bar trapping
    Applegate, RW
    Squier, J
    Vestad, T
    Oakey, J
    Marr, DWM
    Bado, P
    Dugan, MA
    Said, AA
    [J]. LAB ON A CHIP, 2006, 6 (03) : 422 - 426
  • [3] Busch W, 2012, NAT METHODS, V9, P1101, DOI [10.1038/NMETH.2185, 10.1038/nmeth.2185]
  • [4] Microfluidic sorting of microtissues
    Buschke, D. G.
    Resto, P.
    Schumacher, N.
    Cox, B.
    Tallavajhula, A.
    Vivekanandan, A.
    Eliceiri, K. W.
    Williams, J. C.
    Ogle, B. M.
    [J]. BIOMICROFLUIDICS, 2012, 6 (01):
  • [5] Laterally Orienting C. elegans Using Geometry at Microscale for High-Throughput Visual Screens in Neurodegeneration and Neuronal Development Studies
    Caceres, Ivan de Carlos
    Valmas, Nicholas
    Hilliard, Massimo A.
    Lu, Hang
    [J]. PLOS ONE, 2012, 7 (04):
  • [6] Design and operation of a microfluidic sorter for Drosophila embryos
    Chen, CC
    Zappe, S
    Sahin, O
    Zhang, XJ
    Fish, M
    Scott, M
    Solgaard, O
    [J]. SENSORS AND ACTUATORS B-CHEMICAL, 2004, 102 (01) : 59 - 66
  • [7] Concentration and Purification of Human Immunodeficiency Virus Type 1 Virions by Microfluidic Separation of Superparamagnetic Nanoparticles
    Chen, Grace D.
    Alberts, Catharina J.
    Rodriguez, William
    Toner, Mehmet
    [J]. ANALYTICAL CHEMISTRY, 2010, 82 (02) : 723 - 728
  • [8] Human mammalian cell sorting using a highly integrated micro-fabricated fluorescence-activated cell sorter (μFACS)
    Cho, Sung Hwan
    Chen, Chun H.
    Tsai, Frank S.
    Godin, Jessica M.
    Lo, Yu-Hwa
    [J]. LAB ON A CHIP, 2010, 10 (12) : 1567 - 1573
  • [9] Cell sorting by deterministic cell rolling
    Choi, Sungyoung
    Karp, Jeffrey M.
    Karnik, Rohit
    [J]. LAB ON A CHIP, 2012, 12 (08) : 1427 - 1430
  • [10] Crane MM, 2012, NAT METHODS, V9, P977, DOI [10.1038/NMETH.2141, 10.1038/nmeth.2141]