LP bounds for singular integrals associated to surfaces of revolution

被引:24
作者
Cheng, LC [1 ]
Pan, YB
机构
[1] Bryn Mawr Coll, Dept Math, Bryn Mawr, PA 19010 USA
[2] Univ Pittsburgh, Dept Math, Pittsburgh, PA 15260 USA
关键词
D O I
10.1006/jmaa.2001.7710
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
[No abstract available]
引用
收藏
页码:163 / 169
页数:7
相关论文
共 10 条
[1]   Multidimensional van der Corput and sublevel set estimates [J].
Carbery, A ;
Christ, M ;
Wright, J .
JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 1999, 12 (04) :981-1015
[2]   On singular integrals along surfaces related to black spaces [J].
Chen, LK ;
Fan, D .
INTEGRAL EQUATIONS AND OPERATOR THEORY, 1997, 29 (03) :261-268
[3]   MAXIMAL AND SINGULAR INTEGRAL-OPERATORS VIA FOURIER-TRANSFORM ESTIMATES [J].
DUOANDIKOETXEA, J ;
DEFRANCIA, JLR .
INVENTIONES MATHEMATICAE, 1986, 84 (03) :541-561
[4]  
Fan DS, 1997, AM J MATH, V119, P799
[5]   A note of a rough singular integral operator [J].
Fan, DS ;
Guo, KH ;
Pan, YB .
MATHEMATICAL INEQUALITIES & APPLICATIONS, 1999, 2 (01) :73-81
[6]  
Grafakos L, 1998, INDIANA U MATH J, V47, P455
[7]   Singular integrals and maximal functions associated to surfaces of revolution [J].
Kim, WJ ;
Wainger, S ;
Wright, J ;
Ziesler, S .
BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 1996, 28 :291-296
[8]  
PAN Y, BOUNDEDNESS SINGULAR
[9]   PROBLEMS IN HARMONIC-ANALYSIS RELATED TO CURVATURE [J].
STEIN, EM ;
WAINGER, S .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1978, 84 (06) :1239-1295
[10]  
STEIN EM, 1993, HARMONIC ANAL REAL V