Real-time moving horizon estimation for a vibrating active cantilever

被引:19
作者
Abdollahpouri, Mohammad [1 ]
Takacs, Gergely [1 ]
Rohal'-Ilkiv, Boris [1 ]
机构
[1] Slovak Univ Technol Bratislava, Fac Mech Engn, Inst Automat Measurement & Appl Informat, Nam Slobody 17, Bratislava 81231 1, Slovakia
关键词
Vibrating cantilever; Moving horizon estimation; Extended Kalman filter; Parameter estimation; Real-time implementation; Embedded systems; Structural monitoring; STATE ESTIMATION; ALGORITHM;
D O I
10.1016/j.ymssp.2016.09.028
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
Vibrating structures may be subject to changes throughout their operating lifetime due to a range of environmental and technical factors. These variations can be considered as parameter changes in the dynamic model of the structure, while their online estimates can be utilized in adaptive control strategies, or in structural health monitoring. This paper implements the moving horizon estimation (MHE) algorithm on a low-cost embedded computing device that is jointly observing the dynamic states and parameter variations of an active cantilever beam in real time. The practical behavior of this algorithm has been investigated in various experimental scenarios. It has been found, that for the given field of application, moving horizon estimation converges faster than the extended Kalman filter; moreover, it handles atypical measurement noise, sensor errors or other extreme changes, reliably. Despite its improved performance, the experiments demonstrate that the disadvantage of solving the nonlinear optimization problem in MHE is that it naturally leads to an increase in computational effort.
引用
收藏
页码:1 / 15
页数:15
相关论文
共 42 条
[1]   State estimation for large-scale wastewater treatment plants [J].
Busch, Jan ;
Elixmann, David ;
Kuehl, Peter ;
Gerkens, Carine ;
Schloeder, Johannes P. ;
Bock, Hans G. ;
Marquardt, Wolfgang .
WATER RESEARCH, 2013, 47 (13) :4774-4787
[2]   Wavelet transform based on inner product in fault diagnosis of rotating machinery: A review [J].
Chen, Jinglong ;
Li, Zipeng ;
Pan, Jun ;
Chen, Gaige ;
Zi, Yanyang ;
Yuan, Jing ;
Chen, Binqiang ;
He, Zhengjia .
MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2016, 70-71 :1-35
[3]   Intelligent state estimation for fault tolerant nonlinear predictive control [J].
Deshpande, Anjali P. ;
Patwardhan, Sachin C. ;
Narasimhan, Shankar S. .
JOURNAL OF PROCESS CONTROL, 2009, 19 (02) :187-204
[4]   Real-time optimization and nonlinear model predictive control of processes governed by differential-algebraic equations [J].
Diehl, M ;
Bock, HG ;
Schlöder, JP ;
Findeisen, R ;
Nagy, Z ;
Allgöwer, F .
JOURNAL OF PROCESS CONTROL, 2002, 12 (04) :577-585
[5]  
Diehl M, 2009, LECT NOTES CONTR INF, V384, P391, DOI 10.1007/978-3-642-01094-1_32
[6]   Active vibration suppression through positive acceleration feedback on a building-like structure: An experimental study [J].
Enriquez-Zarate, J. ;
Silva-Navarro, G. ;
Abundis-Fong, H. F. .
MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2016, 72-73 :451-461
[7]   qpOASES: a parametric active-set algorithm for quadratic programming [J].
Ferreau, Hans Joachim ;
Kirches, Christian ;
Potschka, Andreas ;
Bock, Hans Georg ;
Diehl, Moritz .
MATHEMATICAL PROGRAMMING COMPUTATION, 2014, 6 (04) :327-363
[8]  
Ferreau HJ, 2012, IEEE DECIS CONTR P, P687, DOI 10.1109/CDC.2012.6426428
[9]  
Gelb A., 1989, Applied Optimal Estimation
[10]   Real-time MHE-based nonlinear MPC of a Pendubot system [J].
Gulan, M. ;
Salaj, M. ;
Abdollahpouri, M. ;
Rohal-Ilkiv, B. .
IFAC PAPERSONLINE, 2015, 48 (23) :422-427