Dynamical structures for southwesterly airflow over southern Norway:: the role of dissipation

被引:12
作者
Barstad, I [1 ]
Gronås, S
机构
[1] Yale Univ, Dept Geol & Geophys, New Haven, CT 06520 USA
[2] Univ Bergen, Dept Geophys, N-5007 Bergen, Norway
来源
TELLUS SERIES A-DYNAMIC METEOROLOGY AND OCEANOGRAPHY | 2006年 / 58卷 / 01期
关键词
D O I
10.1111/j.1600-0870.2006.00152.x
中图分类号
P4 [大气科学(气象学)];
学科分类号
0706 ; 070601 ;
摘要
Earlier studies have revealed mesoscale structures in southwesterly flows over the mountains of southern Norway (Rossby number similar to 1): a left-side jet and an upstream wind minimum as signs of the influence of rotation; a downstream wind shadow connected to inertio-gravity waves; a weak jet on the right side of the wind shadow and a shallow coastal wind shadow between the left-side jet and the main wind shadow. In the present study, the dynamics of the structures have been further examined from the results of experiments performed by a mesoscale numerical model and computations using a linear model with rotation included. Ideal atmospheric conditions for a large-scale: wind direction from southwest have been used to initialize the numerical model. The sensitivity of mesoscale structures was studied with respect to dissipation from wave breaking and surface friction. Nonlinearity and dissipation in breaking waves are needed to explain the location, depth and strength of the downstream wind shadow. Increased wind to the right of the shadow was found to be generated by the effect of the Coriolis force as air was pulled towards the low-pressure perturbation behind the mountains. The coastal wind shadow was found to be a direct result of differential friction between land and ocean. Nonlinear experiments and an attempt to include boundary layer effects in linear theory showed that friction is reducing the effective height of the mountain and the signal of the mesoscale structures.
引用
收藏
页码:2 / 18
页数:17
相关论文
共 38 条
[1]   Southwesterly flows over southern Norway -: mesoscale sensitivity to large-scale wind direction and speed [J].
Barstad, I ;
Gronås, S .
TELLUS SERIES A-DYNAMIC METEOROLOGY AND OCEANOGRAPHY, 2005, 57 (02) :136-152
[2]  
BURK SD, 1989, MON WEATHER REV, V117, P2305, DOI 10.1175/1520-0493(1989)117<2305:AVNRNW>2.0.CO
[3]  
2
[4]   Flow response to large-scale topography: the Greenland tip jet [J].
Doyle, JD ;
Shapiro, MA .
TELLUS SERIES A-DYNAMIC METEOROLOGY AND OCEANOGRAPHY, 1999, 51 (05) :728-748
[5]  
Eliassen A., 1960, Geophysics Publication, V22, P1
[6]  
Gill AE, 1982, INT GEOPHYS SERIES, P662
[7]  
GRELL G, 1994, NCARTNN398STR
[8]  
GRUBISIC V, 1995, J ATMOS SCI, V52, P1985, DOI 10.1175/1520-0469(1995)052<1985:TEOBFO>2.0.CO
[9]  
2
[10]  
KLEMP JB, 1978, J ATMOS SCI, V35, P78, DOI 10.1175/1520-0469(1978)035<0078:NSOHMW>2.0.CO