共 25 条
Columnar Thin Films for Three-Dimensional Microbatteries
被引:61
作者:
Fleischauer, M. D.
[1
]
Li, Jing
[2
]
Brett, M. J.
[1
,3
]
机构:
[1] Natl Inst Nanotechnol, Natl Res Council, Edmonton, AB T6G 2M9, Canada
[2] Dalhousie Univ, Dept Chem, Halifax, NS B3H 2J3, Canada
[3] Univ Alberta, Dept Elect & Comp Engn, Edmonton, AB T6G 2V4, Canada
基金:
加拿大自然科学与工程研究理事会;
关键词:
electrochemical electrodes;
elemental semiconductors;
porous semiconductors;
secondary cells;
semiconductor thin films;
silicon;
vapour deposition;
SILICON ANODES;
LITHIUM;
CAPACITY;
D O I:
10.1149/1.3006001
中图分类号:
O646 [电化学、电解、磁化学];
学科分类号:
081704 ;
摘要:
Controlled-porosity Si thin films suitable for use as high-aspect-ratio microbattery electrodes were produced using the glancing angle deposition (GLAD) technique. GLAD is a high-vacuum physical vapor deposition method that can be used to produce a variety of film morphologies from most vacuum-compatible materials. No lithographic steps were required to create the porous, columnar thin films. Initial electrochemical results indicate large gravimetric and areal capacities (3600 mAh/g, 90 mu Ah/cm(2), respectively), and good capacity retention (3000 mAh/g after 70 charge/discharge cycles) can be obtained from Si vertical post morphology films. Areal capacity and capacity retention can likely be further improved by optimizing the film morphology, electrode material composition, and cycling conditions.
引用
收藏
页码:A33 / A36
页数:4
相关论文