Pore Structure Characterization of the Lower Permian Marine Continental Transitional Black Shale in the Southern North China Basin, Central China

被引:45
作者
Chen, Qian [1 ,2 ]
Zhang, Jinchuan [1 ,2 ]
Tang, Xuan [1 ,2 ]
Dang, Wei [1 ,2 ]
Li, Zhongming [3 ]
Liu, Chong [3 ]
Zhang, Xuezhi [4 ]
机构
[1] China Univ Geosci, Minist Land & Resources, Key Lab Shale Gas Explorat & Evaluat, Beijing 100083, Peoples R China
[2] China Univ Geosci, Sch Energy & Resources, Beijing 100083, Peoples R China
[3] Henan Inst Geol Survey, Zhengzhou 450000, Henan, Peoples R China
[4] PetroChina, Liaohe Oilfield Co, Jinhai Oil Prod Plant, Panjin 124010, Liaoning, Peoples R China
关键词
MISSISSIPPIAN BARNETT SHALE; SIZE DISTRIBUTION; GAS-ADSORPTION; ORGANIC-MATTER; SURFACE-AREA; ELECTRON-MICROSCOPY; SPACE MORPHOLOGY; SICHUAN BASIN; ORDOS BASIN; BIB-SEM;
D O I
10.1021/acs.energyfuels.6b01475
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
The Carboniferous-Permian Taiyuan-Shanxi coal-bearing formations, as the most promising shale-gas reservoir in North China, comprise a typical shale-gas system developed in a transitional environment. To investigate the pore structure of the Taiyuan-Shanxi shale in the Southern North China Basin, field-emission scanning electron microscopy (FE-SEM), low-pressure nitrogen adsorption (LNA), and high-pressure mercury intrusion (HMI) were employed to characterize the pore type, volume, and size distributions of 11 shale samples from the Mouye-1 well. Organic-matter-hosted pores, interparticle pores, intraparticle pores, and shrinkage cracks were observed in the FE-SEM images. Compared to matured marine shale, the number of organic-matter-hosted pores within the Taiyuan-Shanxi shale was much smaller, probably because of the high content of inertinite. The nitrogen total pore volume was found to range from 20.36 x 10(-3) to 31.23 X 10(-3) mL/g, whereas the mercury total pore volume was found to range from 2.1 x 10(-3) to 6.2 x 10(-3) mL/g. The surface area was found to range from 8.66 to 19.38 m(2)/g. The pore size distribution curves suggest a significant contribution of macropores (>50 nm) to the total pore volume. The micropore and meso-/macropore volumes obtained from LNA were found to be separately associated with plagioclase and dolomite. The volume of larger micrometer-sized pore obtained from HMI shows a positive relationship with quartz and a negative relationship with chlorite. However, these correlations are generally weak. The lack of organic-matter hosted pores highlights the importance of pores associated with inorganic material in coal-bearing transitional shale. Rather than organic content, mineral content and chemical/mineral transformation during diagenesis play more important roles with respect to the pore structure. The inhomogeneous pore abundance caused by different degrees of chemical transformation among samples migt be the reason for the weak correlation between the pore volume and the contents of shale components.
引用
收藏
页码:10092 / 10105
页数:14
相关论文
共 50 条
  • [21] Geological controls on methane adsorption capacity of Lower Permian transitional black shales in the Southern North China Basin, Central China: Experimental results and geological implications
    Dang, Wei
    Zhang, Jinchuan
    Wei, Xiaoliang
    Tang, Xuan
    Chen, Qian
    Li, Zhongming
    Zhang, Muchen
    Liu, Jing
    JOURNAL OF PETROLEUM SCIENCE AND ENGINEERING, 2017, 152 : 456 - 470
  • [22] Geochemical characteristics and mechanism of organic matter accumulation of marine-continental transitional shale of the lower permian Shanxi Formation, southeastern Ordos Basin, north China
    Zhao, Bangsheng
    Li, Rongxi
    Qin, Xiaoli
    Wang, Ning
    Zhou, Wei
    Khaled, Ahmed
    Zhao, Di
    Zhang, Yanni
    Wu, Xiaoli
    Liu, Qi
    JOURNAL OF PETROLEUM SCIENCE AND ENGINEERING, 2021, 205
  • [23] Experimental investigation of pore structure and its influencing factors of marine-continental transitional shales in southern Yan'an area, ordos basin, China
    Xiao, Hui
    Xie, Nan
    Lu, Yuanyuan
    Cheng, Tianyue
    Dang, Wei
    FRONTIERS IN EARTH SCIENCE, 2022, 10
  • [24] Nanoscale pore structure and fractal characteristics of the continental Yanchang Formation Chang 7 shale in the southwestern Ordos Basin, central China
    Ju, Wei
    You, Yuan
    Chen, Yilin
    Feng, Shengbin
    Xu, Haoran
    Zhao, Yue
    Liu, Bo
    ENERGY SCIENCE & ENGINEERING, 2019, 7 (04): : 1188 - 1200
  • [25] Nano-Scale Pore Structure of Marine-Continental Transitional Shale from Liulin Area, the Eastern Margin of Ordos Basin, China
    Xi, Zhaodong
    Tang, Shuheng
    Zhang, Songhang
    Li, Jun
    JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY, 2017, 17 (09) : 6109 - 6123
  • [26] Shale gas potential of Ordovician marine Pingliang shale and Carboniferous-Permian transitional Taiyuan-Shanxi shales in the Ordos Basin, China
    Nie, H. K.
    Chen, Q.
    Li, P.
    Dang, W.
    Zhang, J. C.
    AUSTRALIAN JOURNAL OF EARTH SCIENCES, 2023, 70 (03) : 411 - 422
  • [27] Influence of structural damage on evaluation of microscopic pore structure in marine continental transitional shale of the Southern North China Basin: A method based on the low-temperature N2 adsorption experiment
    Han, Mei-Ling
    Wei, Xiao-Liang
    Zhang, Jin-Chuan
    Liu, Yang
    Tang, Xuan
    Li, Pei
    Liu, Zi-Yi
    PETROLEUM SCIENCE, 2022, 19 (01) : 100 - 115
  • [28] Study on pore evolution and diagenesis division of a Permian Longtan transitional shale in Southwest Guizhou, China
    Ma, Xiao
    Guo, Shaobin
    ENERGY SCIENCE & ENGINEERING, 2021, 9 (01) : 58 - 79
  • [29] Nanoscale Pore Fractal Characteristics of Permian Shale and Its Impact on Methane-Bearing Capacity: A Case Study from Southern North China Basin, Central China
    Wei, Xiaoliang
    Chen, Qian
    Zhang, Jinchuan
    Nie, Haikuan
    Dang, Wei
    Li, Zhongming
    Tang, Xuan
    Lang, Yue
    Lin, Lamei
    JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY, 2021, 21 (01) : 139 - 155
  • [30] Geochemistry and shale gas potential of the lower Permian marine-continental transitional shales in the Eastern Ordos Basin
    Wei, Jingyi
    Wang, Yongli
    Wang, Gen
    Wei, Zhifu
    He, Wei
    ENERGY EXPLORATION & EXPLOITATION, 2021, 39 (03) : 738 - 760