k-Essence Inflation Evading Swampland Conjectures and Inflationary Parameters

被引:6
|
作者
Jawad, Abdul [1 ]
Rani, Shamaila [1 ]
Sultan, Abdul Malik [1 ,2 ]
Embreen, Kashaf [1 ]
机构
[1] COMSATS Univ Islamabad, Dept Math, Lahore Campus, Lahore 54000, Pakistan
[2] Univ Okara, Dept Math, Okara 56300, Pakistan
关键词
k-essence scalar field; swampland conjectures; inflationary parameters; MODIFIED CHAPLYGIN-GAS; GRAVITY; COSMOLOGY; UNIVERSE; ENERGY;
D O I
10.3390/universe8100532
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
In this paper, we study the inflationary scenario in the realm of k-essence model and swampland conjectures. Taking into account three models of Chaplygin gas, such as generalized, modified, and generalized cosmic Chaplygin gas models, we discuss the equation of state (EoS) parameter omega, slow roll parameters (epsilon(phi),eta(phi)), curvature perturbation (P-s), tensor to scalar ratio (r), and scalar spectral index (ns). As regards the k-essence model, the coupling function as a function of scalar field L(phi) is used. We investigate the swampland conjecture and then find the value of zeta(phi), i.e., bound of second conjecture for these three models by unifying swampland conjecture and k-essence. We plot the EoS parameter omega, inflationary parameters plane r-ns and bound of swampland conjecture zeta(phi)-phi, which determine that the values of omega<-1 for each model, r, are r < 0.0094, r <= 0.0065, r <= 0.0067, and ranges for ns are [0.934,0.999],[0.9,0.999],[0.9,0.992] for generalized, modified, and generalized cosmic Chaplygin gas models, respectively, and compare their compatibility with the Planck data from 2018. Furthermore, we determine the bound for swampland conjecture as zeta(phi)<= 0.992, zeta(phi)<= 0.964,zeta(phi)<= 0.964 for generalized, modified and generalized cosmic Chaplygin gas models, respectively.
引用
收藏
页数:21
相关论文
共 50 条
  • [31] K-essence with a Polynomial Equation of State
    Cordero, Ruben
    Gonzalez, Eduardo L.
    Queijeiro, Alfonso
    VIII WORKSHOP OF THE GRAVITATION AND MATHEMATICAL PHYSICS DIVISION OF THE MEXICAN PHYSICAL SOCIETY, 2011, 1396
  • [32] F(T) gravity and k-essence
    Myrzakulov, Ratbay
    GENERAL RELATIVITY AND GRAVITATION, 2012, 44 (12) : 3059 - 3080
  • [33] k-ESSENCE AND TACHYONS IN BRANEWORLD COSMOLOGY
    Chimento, Luis P.
    Richarte, Martin G.
    INTERNATIONAL JOURNAL OF MODERN PHYSICS D, 2011, 20 (09): : 1705 - 1712
  • [34] Cosmological Yang-Mills model with k-essence
    Razina, O., V
    Tsyba, P. Yu
    Myrzakulov, R.
    Meirbekov, B.
    Shanina, Z.
    8TH INTERNATIONAL CONFERENCE ON MATHEMATICAL MODELING IN PHYSICAL SCIENCE, 2019, 1391
  • [35] DBI potential, DBI inflation action and general Lagrangian relative to phantom, K-essence and quintessence
    Zhang, Qing
    Huang, Yong-Chang
    JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS, 2011, (11):
  • [36] Formation of caustics in k-essence and Horndeski theory
    Babichev, Eugeny
    JOURNAL OF HIGH ENERGY PHYSICS, 2016, (04):
  • [37] CROSSING THE PHANTOM DIVIDE WITH k-ESSENCE IN BRANEWORLDS
    Chimento, Luis P.
    Forte, Monica
    Richarte, Martin G.
    MODERN PHYSICS LETTERS A, 2010, 25 (29) : 2469 - 2481
  • [38] Cosmology of F (T) Gravity and k-Essence
    Myrzakulov, Ratbay
    ENTROPY, 2012, 14 (09) : 1627 - 1651
  • [39] Dynamical systems analysis of a k-essence model
    Chakraborty, Abhijit
    Ghosh, Anandamohan
    Banerjee, Narayan
    PHYSICAL REVIEW D, 2019, 99 (10)
  • [40] CMB Power Spectrum in the Emergent Universe with K-Essence
    Huang, Qihong
    Zhang, Kaituo
    Huang, He
    Xu, Bing
    Tu, Feiquan
    UNIVERSE, 2023, 9 (05)