Quantum phase transitions in the dimerized extended Bose-Hubbard model

被引:14
作者
Sugimoto, Koudai [1 ]
Ejima, Satoshi [2 ]
Lange, Florian [2 ]
Fehske, Holger [2 ]
机构
[1] Chiba Univ, Ctr Frontier Sci, Chiba 2638522, Japan
[2] Ernst Moritz Arndt Univ Greifswald, Inst Phys, D-17489 Greifswald, Germany
关键词
ULTRACOLD; SIMULATIONS; DIAGRAM;
D O I
10.1103/PhysRevA.99.012122
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We present an unbiased numerical density-matrix renormalization group study of the one-dimensional Bose-Hubbard model supplemented by nearest-neighbor Coulomb interaction and bond dimerization. It places the emphasis on the determination of the ground-state phase diagram and shows that, besides dimerized Mott and density-wave insulating phases, an intermediate symmetry-protected topological Haldane insulator emerges at weak Coulomb interactions for filling factor one, which disappears, however, when the dimerization becomes too large. Analyzing the critical behavior of the model, we prove that the phase boundaries of the Haldane phase to Mott insulator and density-wave states belong to the Gaussian and Ising universality classes with central charges c = 1 and c = 1/2, respectively, and merge in a tricritical point. Interestingly we can demonstrate a direct Ising quantum phase transition between the dimerized Mott and density-wave phases above the tricritical point. The corresponding transition line terminates at a critical end point that belongs to the universality class of the dilute Ising model with c = 7/10. At even stronger Coulomb interactions the transition becomes first order.
引用
收藏
页数:7
相关论文
共 38 条
[1]   Haldane gap and fractional oscillations in gated Josephson arrays [J].
Altman, E ;
Auerbach, A .
PHYSICAL REVIEW LETTERS, 1998, 81 (20) :4484-4487
[2]   Oscillating superfluidity of bosons in optical lattices [J].
Altman, E ;
Auerbach, A .
PHYSICAL REVIEW LETTERS, 2002, 89 (25) :1-250404
[3]  
[Anonymous], ARXIV08042509
[4]  
Atala M, 2013, NAT PHYS, V9, P795, DOI [10.1038/NPHYS2790, 10.1038/nphys2790]
[5]   Extended Bose-Hubbard models with ultracold magnetic atoms [J].
Baier, S. ;
Mark, M. J. ;
Petter, D. ;
Aikawa, K. ;
Chomaz, L. ;
Cai, Z. ;
Baranov, M. ;
Zoller, P. ;
Ferlaino, F. .
SCIENCE, 2016, 352 (6282) :201-205
[6]   Competing phases, phase separation, and coexistence in the extended one-dimensional bosonic Hubbard model [J].
Batrouni, G. G. ;
Rousseau, V. G. ;
Scalettar, R. T. ;
Gremaud, B. .
PHYSICAL REVIEW B, 2014, 90 (20)
[7]   Rise and fall of hidden string order of lattice bosons [J].
Berg, Erez ;
Dalla Torre, Emanuele G. ;
Giamarchi, Thierry ;
Altman, Ehud .
PHYSICAL REVIEW B, 2008, 77 (24)
[8]   Many-body physics with ultracold gases [J].
Bloch, Immanuel ;
Dalibard, Jean ;
Zwerger, Wilhelm .
REVIEWS OF MODERN PHYSICS, 2008, 80 (03) :885-964
[9]  
Bloch I, 2012, NAT PHYS, V8, P267, DOI [10.1038/nphys2259, 10.1038/NPHYS2259]
[10]   Entanglement entropy and quantum field theory [J].
Calabrese, P ;
Cardy, J .
JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2004,