COMBINER OF CLASSIFIERS USING GENETIC ALGORITHM FOR CLASSIFICATION OF REMOTE SENSED HYPERSPECTRAL IMAGES

被引:5
|
作者
Santos, A. B. [1 ]
Araujo, A. de A. [1 ]
Menotti, D.
机构
[1] Univ Fed Minas Gerais, Dept Comp Sci, Belo Horizonte, MG, Brazil
来源
2012 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS) | 2012年
关键词
Ensemble of classifiers; conscious combiners; hyperspectral images; classification; genetic algorithm;
D O I
10.1109/IGARSS.2012.6351699
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In the past few years, hyperspectral images have been considered as one of the most important tool in land cover classification due to its capability to obtain rich information of materials on earth surface. In this work we aim to produce an accurate thematic map for the remote sensed hyperspectral image classification problem, which is obtained using a combination of several classification methods. Three types of feature representation and two learning algorithms (Support Vector Machines (SVM) and Backpropagation Multilayer Perceptron Neural Network (MLP)) were used yielding six classification methods to perform the combination. Our combination proposal is based on Weighted Linear Combination (WLC), in which weights are found using a Genetic Algorithm (GA) - WLC-GA. Experiments were carried out with two well-known datasets: Indian Pines and Pavia University, and we observed that our proposed WLC-GA method achieves the highest accuracy among traditional Conscious Combiners, the widely used Majority Vote (MV) and Weighted Majority Vote (WMV), for both datasets.
引用
收藏
页码:4146 / 4149
页数:4
相关论文
共 50 条
  • [1] Enhanced classification of remotely sensed hyperspectral images through efficient band selection using autoencoders and genetic algorithm
    Singh, Pangambam Sendash
    Karthikeyan, Subbiah
    NEURAL COMPUTING & APPLICATIONS, 2022, 34 (24) : 21539 - 21550
  • [2] Enhanced classification of remotely sensed hyperspectral images through efficient band selection using autoencoders and genetic algorithm
    Pangambam Sendash Singh
    Subbiah Karthikeyan
    Neural Computing and Applications, 2022, 34 : 21539 - 21550
  • [3] ENSEMBLE OF CLASSIFIERS FOR REMOTE SENSED HYPERSPECTRAL LAND COVER ANALYSIS: AN APPROACH BASED ON LINEAR PROGRAMMING AND WEIGHTED LINEAR COMBINATION
    Tinoco, S. L. J. L.
    Santos, H. G.
    Menotti, D.
    Santos, A. B.
    dos Santos, J. A.
    2013 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2013, : 4082 - 4085
  • [4] Classification of Hyperspectral Remote Sensing Image Based on Genetic Algorithm and SVM
    Zhou, Mandi
    Shu, Jiong
    Chen, Zhigang
    REMOTE SENSING AND MODELING OF ECOSYSTEMS FOR SUSTAINABILITY VII, 2010, 7809
  • [5] Active-Metric Learning for Classification of Remotely Sensed Hyperspectral Images
    Pasolli, Edoardo
    Yang, Hsiuhan Lexie
    Crawford, Melba M.
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2016, 54 (04): : 1925 - 1939
  • [6] Acquiring hyperspectral remotely sensed images classification rules using inductive learning
    Sun, LX
    Zhang, YM
    HYPERSPECTRAL REMOTE SENSING AND APPLICATIONS, 1998, 3502 : 164 - 168
  • [7] Classification of hyperspectral remote sensing images with support vector machines
    Melgani, F
    Bruzzone, L
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2004, 42 (08): : 1778 - 1790
  • [8] Classification of hyperspectral remote sensing images using frequency spectrum similarity
    Wang Ke
    Gu XingFa
    Yu Tao
    Meng QingYan
    Zhao LiMin
    Feng Li
    SCIENCE CHINA-TECHNOLOGICAL SCIENCES, 2013, 56 (04) : 980 - 988
  • [9] Classification of hyperspectral remote sensing images using frequency spectrum similarity
    WANG Ke
    GU XingFa
    YU Tao
    MENG QingYan
    ZHAO LiMin
    FENG Li
    Science China(Technological Sciences), 2013, (04) : 980 - 988
  • [10] Classification of hyperspectral remote sensing images using frequency spectrum similarity
    Ke Wang
    XingFa Gu
    Tao Yu
    QingYan Meng
    LiMin Zhao
    Li Feng
    Science China Technological Sciences, 2013, 56 : 980 - 988