Optimal Bounds for Seiffert Mean in terms of One-Parameter Means

被引:5
|
作者
Hu, Hua-Nan [3 ]
Tu, Guo-Yan [2 ]
Chu, Yu-Ming [1 ]
机构
[1] Huzhou Teachers Coll, Dept Math, Huzhou 313000, Peoples R China
[2] Tongji Zhejiang Coll, Dept Basic Course Teaching, Jiaxing 314000, Peoples R China
[3] Huzhou Teachers Coll, Acquisit & Cataloging Dept Lib, Huzhou 313000, Peoples R China
关键词
CONVEXITY; VALUES;
D O I
10.1155/2012/917120
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The authors present the greatest value r(1) and the least value r(2) such that the double inequality J(r1) (a, b) < T (a, b) < J(r2) (a, b) holds for all a, b > 0 with a not equal b, where T (a, b) and J(p) (a, b) denote the Seiffert and pth one-parameter means of two positive numbers a and b, respectively.
引用
收藏
页数:7
相关论文
共 50 条
  • [41] Sharp Bounds for the Weighted Geometric Mean of the First Seiffert and Logarithmic Means in terms of Weighted Generalized Heronian Mean
    Matejicka, Ladislav
    ABSTRACT AND APPLIED ANALYSIS, 2013,
  • [42] THE OPTIMAL GENERALIZED LOGARITHMIC MEAN BOUNDS FOR SEIFFERT’S MEAN
    褚玉明
    王淼坤
    王根娣
    Acta Mathematica Scientia, 2012, (04) : 1619 - 1626
  • [43] The Optimal Convex Combination Bounds for Seiffert's Mean
    Liu, Hong
    Meng, Xiang-Ju
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2011,
  • [44] The Optimal Convex Combination Bounds for Seiffert's Mean
    Hong Liu
    Xiang-Ju Meng
    Journal of Inequalities and Applications, 2011
  • [45] OPTIMAL BOUNDS FOR TOADER MEAN IN TERMS OF ARITHMETIC AND CONTRAHARMONIC MEANS
    Song, Ying-Qing
    Jiang, Wei-Dong
    Chu, Yu-Ming
    Yan, Dan-Dan
    JOURNAL OF MATHEMATICAL INEQUALITIES, 2013, 7 (04): : 751 - 757
  • [46] Sharp one-parameter geometric and quadratic means bounds for the Sandor-Yang means
    Wang, Bo
    Luo, Chen-Lan
    Li, Shi-Hui
    Chu, Yu-Ming
    REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2020, 114 (01)
  • [47] SHARP BOUNDS FOR NEUMAN-SANDOR MEAN IN TERMS OF THE CONVEX COMBINATION OF QUADRATIC AND FIRST SEIFFERT MEANS
    Chu, Yuming
    Zhao, Tiehong
    Song, Yingqing
    ACTA MATHEMATICA SCIENTIA, 2014, 34 (03) : 797 - 806
  • [48] Sharp one-parameter geometric and quadratic means bounds for the Sándor–Yang means
    Bo Wang
    Chen-Lan Luo
    Shi-Hui Li
    Yu-Ming Chu
    Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 2020, 114
  • [49] Optimal bounds for Seiffert-like elliptic integral mean by harmonic, geometric, and arithmetic means
    Fan Zhang
    Weimao Qian
    Hui Zuo Xu
    Journal of Inequalities and Applications, 2022
  • [50] SHARP WEIGHTED HOLDER MEAN BOUNDS FOR SEIFFERT'S MEANS
    Zhao, Tie-Hong
    Wang, Miao-Kun
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 2024, 27 (02): : 327 - 345