Melanoma segmentation based on deep learning

被引:24
|
作者
Zhang, Xiaoqing [1 ]
机构
[1] Donghua Univ, Coll Informat Sci & Technol, Shanghai, Peoples R China
关键词
Melanoma; image segmentation; deep learning; convolutional neural networks; COMPUTER IMAGE-ANALYSIS; FEATURES;
D O I
10.1080/24699322.2017.1389405
中图分类号
R61 [外科手术学];
学科分类号
摘要
Malignant melanoma is one of the most deadly forms of skin cancer, which is one of the world's fastest-growing cancers. Early diagnosis and treatment is critical. In this study, a neural network structure is utilized to construct a broad and accurate basis for the diagnosis of skin cancer, thereby reducing screening errors. The technique is able to improve the efficacy for identification of normally indistinguishable lesions (such as pigment spots) versus clinically unknown lesions, and to ultimately improve the diagnostic accuracy. In the field of medical imaging, in general, using neural networks for image segmentation is relatively rare. The existing traditional machine-learning neural network algorithms still cannot completely solve the problem of information loss, nor detect the precise division of the boundary area. We use an improved neural network framework, described herein, to achieve efficacious feature learning, and satisfactory segmentation of melanoma images. The architecture of the network includes multiple convolution layers, dropout layers, softmax layers, multiple filters, and activation functions. The number of data sets can be increased via rotation of the training set. A non-linear activation function (such as ReLU and ELU) is employed to alleviate the problem of gradient disappearance, and RMSprop/Adam are incorporated to optimize the loss algorithm. A batch normalization layer is added between the convolution layer and the activation layer to solve the problem of gradient disappearance and explosion. Experiments, described herein, show that our improved neural network architecture achieves higher accuracy for segmentation of melanoma images as compared with existing processes.
引用
收藏
页码:267 / 277
页数:11
相关论文
共 50 条
  • [1] Melanoma Segmentation and Classification in Clinical Images Using Deep Learning
    Ge, Yunhao
    Li, Bin
    Zhao, Yanzheng
    Guan, Enguang
    Yan, Weixin
    PROCEEDINGS OF 2018 10TH INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND COMPUTING (ICMLC 2018), 2018, : 252 - 256
  • [2] Improving Automatic Melanoma Diagnosis Using Deep Learning-Based Segmentation of Irregular Networks
    Nambisan, Anand K.
    Maurya, Akanksha
    Lama, Norsang
    Phan, Thanh
    Patel, Gehana
    Miller, Keith
    Lama, Binita
    Hagerty, Jason
    Stanley, Ronald
    Stoecker, William V.
    CANCERS, 2023, 15 (04)
  • [3] Automated Mouse Organ Segmentation: A Deep Learning Based Solution
    Ashish, Naveen
    Brusniak, Mi-Youn
    ACM-BCB'18: PROCEEDINGS OF THE 2018 ACM INTERNATIONAL CONFERENCE ON BIOINFORMATICS, COMPUTATIONAL BIOLOGY, AND HEALTH INFORMATICS, 2018, : 236 - 243
  • [4] Segmentation-based Deep Learning Fundus Image Analysis
    Wu, Qian
    Cheddad, Abbas
    2019 NINTH INTERNATIONAL CONFERENCE ON IMAGE PROCESSING THEORY, TOOLS AND APPLICATIONS (IPTA), 2019,
  • [5] Deep Learning based Melanoma Detection from Dermoscopic Images
    Berkay, Mustafa
    Mergen, Ezgi Hazal
    Binici, Rifki Can
    Bayhan, Yasemin
    Gungor, Ayca
    Okur, Erdem
    Unay, Devrim
    Turkan, Mehmet
    2019 SCIENTIFIC MEETING ON ELECTRICAL-ELECTRONICS & BIOMEDICAL ENGINEERING AND COMPUTER SCIENCE (EBBT), 2019,
  • [6] Image Segmentation of a Sewer Based on Deep Learning
    He, Min
    Zhao, Qinnan
    Gao, Huanhuan
    Zhang, Xinying
    Zhao, Qin
    SUSTAINABILITY, 2022, 14 (11)
  • [7] Optimization of deep learning based segmentation method
    Inik, Ozkan
    Ulker, Erkan
    SOFT COMPUTING, 2022, 26 (07) : 3329 - 3344
  • [8] Research on Segmentation Technology in Lung Cancer Radiotherapy Based on Deep Learning
    Huang, Jun
    Liu, Tao
    Qian, Beibei
    Chen, Zhibo
    Wang, Ya
    CURRENT MEDICAL IMAGING, 2023, 19 (11) : 1231 - 1244
  • [9] Automatic tissue image segmentation based on image processing and deep learning
    Kong, Zhenglun
    Luo, Junyi
    Xu, Shengpu
    Li, Ting
    NEURAL IMAGING AND SENSING 2018, 2018, 10481
  • [10] Deep learning based brain tumor segmentation: a survey
    Liu, Zhihua
    Tong, Lei
    Chen, Long
    Jiang, Zheheng
    Zhou, Feixiang
    Zhang, Qianni
    Zhang, Xiangrong
    Jin, Yaochu
    Zhou, Huiyu
    COMPLEX & INTELLIGENT SYSTEMS, 2023, 9 (01) : 1001 - 1026