U-duality transformation of membrane on Tn revisited

被引:2
作者
Hu, Shan [1 ]
Li, Tianjun [2 ,3 ,4 ,5 ]
机构
[1] Hubei Univ, Dept Phys & Elect Technol, Wuhan 430062, Peoples R China
[2] Chinese Acad Sci, Inst Theoret Phys, Key Lab Theoret Phys, Beijing 100190, Peoples R China
[3] Chinese Acad Sci, Inst Theoret Phys, KITPC, Beijing 100190, Peoples R China
[4] Univ Chinese Acad Sci, Sch Phys Sci, Beijing 100049, Peoples R China
[5] Univ Elect Sci & Technol China, Sch Phys Elect, Chengdu 610054, Peoples R China
关键词
M(atrix) Theories; M-Theory; p-branes; String Duality; ROTATIONS; BRANES;
D O I
10.1007/JHEP08(2016)138
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
The problem with the U-duality transformation of membrane on T-n is recently addressed in [arXiv:1509.02915]. We will consider the U-duality transformation rule of membrane on T-n x R. It turns out that winding modes on T-n should be taken into account, since the duality transformation may bring the membrane configuration without winding modes into the one with winding modes. With the winding modes added, the membrane worldvolume theory in lightcone gauge is equivalent to the n + 1 dimensional super-Yang-Mills (SYM) theory in T-n which has SL(2, Z) x SL(3, Z) and SL(5, Z) symmetries for n = 3 and n = 4, respectively. The SL(2, Z) x SL(3, Z) transformation can be realized classically, making the on-shell field configurations transformed into each other. However, the SL(5, Z) symmetry may only be realized at the quantum level, since the classical 5d SYM field configurations cannot form the representation of SL(5, Z).
引用
收藏
页数:20
相关论文
共 19 条
[1]   String theory dualities from M-theory [J].
Aharony, O .
NUCLEAR PHYSICS B, 1996, 476 (03) :470-483
[2]  
[Anonymous], 1998, Adv. Theor. Math. Phys., DOI [10.4310/ATMP.1998.v2.n1.a2, DOI 10.4310/ATMP.1998.V2.N1.A2]
[3]   M theory as a matrix model: A conjecture [J].
Banks, T ;
Fischler, W ;
Shenker, SH ;
Susskind, L .
PHYSICAL REVIEW D, 1997, 55 (08) :5112-5128
[4]  
Bengtsson V, 2005, J HIGH ENERGY PHYS
[5]   PROPERTIES OF THE 11-DIMENSIONAL SUPERMEMBRANE THEORY [J].
BERGSHOEFF, E ;
SEZGIN, E ;
TOWNSEND, PK .
ANNALS OF PHYSICS, 1988, 185 (02) :330-368
[6]   Non-Abelian generalization of electric-magnetic duality - A brief review [J].
Chan, HM ;
Tsou, ST .
INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 1999, 14 (14) :2139-2172
[7]   Generalized dual symmetry for non-Abelian Yang-Mills fields [J].
Chan, HM ;
Faridani, J ;
Tsun, TS .
PHYSICAL REVIEW D, 1996, 53 (12) :7293-7305
[8]   ON THE QUANTUM-MECHANICS OF SUPERMEMBRANES [J].
DEWIT, B ;
HOPPE, J ;
NICOLAI, H .
NUCLEAR PHYSICS B, 1988, 305 (04) :545-581
[9]   Membrane duality revisited [J].
Duff, M. J. ;
Lu, J. X. ;
Percacci, R. ;
Pope, C. N. ;
Samtleben, H. ;
Sezgin, E. .
NUCLEAR PHYSICS B, 2015, 901 :1-21
[10]   DUALITY ROTATIONS IN STRING THEORY [J].
DUFF, MJ .
NUCLEAR PHYSICS B, 1990, 335 (03) :610-620