On a Lorentzian Complex Space Form

被引:2
作者
Pandey, Pankaj [1 ]
Chaturvedi, B. B. [2 ]
机构
[1] Lovely Profess Univ, Dept Math, Sch Chem Engn & Phys Sci, Phagwara 144411, Punjab, India
[2] Guru GhasidasVishwavidyalaya, Dept Pure & Appl Math, Bilaspur 495009, CG, India
来源
NATIONAL ACADEMY SCIENCE LETTERS-INDIA | 2020年 / 43卷 / 04期
关键词
Lorentzian Kahler manifold; Lorentzian complex space form; Einstein's field equation; Energy-momentum tensor; Perfect fluid; Heat flux;
D O I
10.1007/s40009-020-00874-7
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The aim of the present paper is to study the theory of general relativity in a Lorentzian Kahler space. In this paper, we have considered the Lorentzian complex space form with constant sectional curvature and proved that a Lorentzian complex space form satisfying Einstein's field equation is a Ricci semi-symmetric space and the energy-momentum tensor is covariant constant. Such space reduces to a flat space for a purely electromagnetic distribution. The existence of the Killing vector field and conformal Killing vector field has been discussed and proved that the cosmological term is proportional to sectional curvature. Further, it is shown that the perfect fluid in a Lorentzian complex space form satisfying Einstein's field equation does not admit heat flux.
引用
收藏
页码:351 / 353
页数:3
相关论文
共 9 条
[1]   Concircular Curvature Tensor and Fluid Spacetimes [J].
Ahsan, Zafar ;
Siddiqui, Shah Alam .
INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2009, 48 (11) :3202-3212
[2]   On Conformally Flat Almost Pseudo-Ricci Symmetric Spacetimes [J].
De, Avik ;
Ozgur, Cihan ;
De, Uday Chand .
INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2012, 51 (09) :2878-2887
[3]   Spacetimes with Semisymmetric Energy-Momentum Tensor [J].
De, U. C. ;
Velimirovic, Ljubica .
INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2015, 54 (06) :1779-1783
[4]  
De UC, 2012, KRAGUJEV J MATH, V36, P299
[5]  
GalaevA S, 2016, ARXIV160607701
[6]  
Hinterleitner I, 2010, ARCH MATH-BRNO, V46, P333
[7]   ON THE STRUCTURE OF PSEUDO-RIEMANNIAN SYMMETRIC SPACES [J].
Kath, I. ;
Olbrich, M. .
TRANSFORMATION GROUPS, 2009, 14 (04) :847-885
[8]  
ONeill B., 1983, Pure and Applied Mathematics
[9]   ON QUASI-EINSTEIN SPACETIMES [J].
Shaikh, Absos Ali ;
Yoon, Dae Won ;
Hui, Shyamal Kumar .
TSUKUBA JOURNAL OF MATHEMATICS, 2009, 33 (02) :305-326