The Excitatory Neuronal Network of the C2 Barrel Column in Mouse Primary Somatosensory Cortex

被引:621
作者
Lefort, Sandrine [1 ]
Tomm, Christian [2 ]
Sarria, J. -C. Floyd [3 ]
Petersen, Carl C. H. [1 ]
机构
[1] Ecole Polytech Fed Lausanne, Fac Life Sci, Brain Mind Inst, Lab Sensory Proc, CH-1015 Lausanne, Switzerland
[2] Ecole Polytech Fed Lausanne, Fac Life Sci, Brain Mind Inst, Lab Computat Neurosci, CH-1015 Lausanne, Switzerland
[3] Ecole Polytech Fed Lausanne, Fac Life Sci, CH-1015 Lausanne, Switzerland
基金
瑞士国家科学基金会;
关键词
PYRAMIDAL CELLS; MONOSYNAPTIC CONNECTIONS; FUNCTIONAL-ORGANIZATION; SYNAPTIC CONNECTIONS; PRESYNAPTIC NMDA; MAP PLASTICITY; LAYER-IV; SINGLE; PAIRS; CIRCUIT;
D O I
10.1016/j.neuron.2008.12.020
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Local microcircuits within neocortical columns form key determinants of sensory processing. Here, we investigate the excitatory synaptic neuronal network of an anatomically defined cortical column, the C2 barrel column of mouse primary somatosensory cortex. This cortical column is known to process tactile information related to the C2 whisker. Through multiple simultaneous whole-cell recordings, we quantify connectivity maps between individual excitatory neurons located across all cortical layers of the C2 barrel column. Synaptic connectivity depended strongly upon somatic laminar location of both presynaptic and postsynaptic neurons, providing definitive evidence for layer-specific signaling pathways. The strongest excitatory influence upon the cortical column was provided by presynaptic layer 4 neurons. In all layers we found rare large-amplitude synaptic connections, which are likely to contribute strongly to reliable information processing. Our data set provides the first functional description of the excitatory synaptic wiring diagram of a physiologically relevant and anatomically well-defined cortical column at single-cell resolution.
引用
收藏
页码:301 / 316
页数:16
相关论文
empty
未找到相关数据