Transcriptional disruption by the L1 retrotransposon and implications for mammalian transcriptomes

被引:380
作者
Han, JS
Szak, ST
Boeke, JD [1 ]
机构
[1] Johns Hopkins Univ, Sch Med, Dept Mol Biol & Genet, Baltimore, MD 21205 USA
[2] Johns Hopkins Univ, Sch Med, High Throughput Biol Ctr, Baltimore, MD 21205 USA
[3] Biogen Inc, Cambridge, MA 02142 USA
基金
美国国家卫生研究院;
关键词
D O I
10.1038/nature02536
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
LINE-1 (L1) elements are the most abundant autonomous retrotransposons in the human genome, accounting for about 17% of human DNA. The L1 retrotransposon encodes two proteins, open reading frame (ORF)1 and the ORF2 endonuclease/reverse transcriptase. L1 RNA and ORF2 protein are difficult to detect in mammalian cells, even in the context of overexpression systems. Here we show that inserting L1 sequences on a transcript significantly decreases RNA expression and therefore protein expression. This decreased RNA concentration does not result from major effects on the transcription initiation rate or RNA stability. Rather, the poor L1 expression is primarily due to inadequate transcriptional elongation. Because L1 is an abundant and broadly distributed mobile element, the inhibition of transcriptional elongation by L1 might profoundly affect expression of endogenous human genes. We propose a model in which L1 affects gene expression genome-wide by acting as a 'molecular rheostat' of target genes. Bioinformatic data are consistent with the hypothesis that L1 can serve as an evolutionary fine-tuner of the human transcriptome.
引用
收藏
页码:268 / 274
页数:7
相关论文
共 50 条
[1]   Transposition mediated by RAG1 and RAG2 and its implications for the evolution of the immune system [J].
Agrawal, A ;
Eastman, QM ;
Schatz, DG .
NATURE, 1998, 394 (6695) :744-751
[2]   Sex brings transposons and genomes into conflict [J].
Bestor, TH .
GENETICA, 1999, 107 (1-3) :289-295
[3]   L1 (LINE-1) retrotransposon evolution and amplification in recent human history [J].
Boissinot, S ;
Chevret, P ;
Furano, AV .
MOLECULAR BIOLOGY AND EVOLUTION, 2000, 17 (06) :915-928
[4]   Selection against deleterious LINE-1-containing loci in the human lineage [J].
Boissinot, S ;
Entezam, A ;
Furano, AV .
MOLECULAR BIOLOGY AND EVOLUTION, 2001, 18 (06) :926-935
[5]   DEVELOPMENTAL AND CELL-TYPE SPECIFICITY OF LINE-1 EXPRESSION IN MOUSE TESTIS - IMPLICATIONS FOR TRANSPOSITION [J].
BRANCIFORTE, D ;
MARTIN, SL .
MOLECULAR AND CELLULAR BIOLOGY, 1994, 14 (04) :2584-2592
[6]   Unequal homologous recombination between LINE-1 elements as a mutational mechanism in human genetic disease [J].
Burwinkel, B ;
Kilimann, MW .
JOURNAL OF MOLECULAR BIOLOGY, 1998, 277 (03) :513-517
[7]   Hpr1 is preferentially required for transcription of either long or G+C-Rich DNA sequences in Saccharomyces cerevisiae [J].
Chávez, S ;
García-Rubio, M ;
Prado, F ;
Aguilera, A .
MOLECULAR AND CELLULAR BIOLOGY, 2001, 21 (20) :7054-7064
[8]   The human LINE-1 reverse transcriptase: effect of deletions outside the common reverse transcriptase domain [J].
Clements, AP ;
Singer, MF .
NUCLEIC ACIDS RESEARCH, 1998, 26 (15) :3528-3535
[9]   Human L1 element target-primed reverse transcription in vitro [J].
Cost, GJ ;
Feng, QH ;
Jacquier, A ;
Boeke, JD .
EMBO JOURNAL, 2002, 21 (21) :5899-5910
[10]   Targeting of human retrotransposon integration is directed by the specificity of the L1 endonuclease for regions of unusual DNA structure [J].
Cost, GJ ;
Boeke, JD .
BIOCHEMISTRY, 1998, 37 (51) :18081-18093