Boron-Doped Diamond Electrodes: Fundamentals for Electrochemical Applications

被引:108
作者
Einaga, Yasuaki [1 ]
机构
[1] Keio Univ, Dept Chem, Yokohama 2238522, Japan
关键词
synthesis; CO; 2; reduction; ozone water generation; electrochemilumines-; TEMPERATURE-PROGRAMMED DESORPTION; HIGHLY SENSITIVE DETECTION; SURFACES; HYDROGEN; ACID; NANOSCALE; OXIDATION; CARBON;
D O I
10.1021/acs.accounts.2c00597
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
CONSPECTUS: Boron-doped diamond (BDD) electrodes have emerged as next-generation electrode materials for various applications in electrochemistry such as electrochemical sensors, electrochemical organic cence, etc. An optimal BDD electrode design is necessary to realize these applications. The electrochemical properties of BDD electrodes are determined by important parameters such as (1) surface termination, (2) surface orientation, and (3) boron doping level. In this Account, we discuss how these parameters contribute to the function of BDD electrodes. First, control of the surface termination (hydrogen/oxygen) is described. The electrochemical conditions such as the solution pH and the application potential were studied precisely. It was confirmed that an acidic solution and the application of negative potential accelerate hydrogenation, and the mechanism behind this is discussed. For oxygenation, we directly observed changes in surface functional groups by in situ attenuated total reflection infrared spectroscopy and electrochemical X-ray photoelectron spectroscopy measurements. Next, the difference in surface orientation was examined. We prepared homoepitaxial single-crystal diamond electrodes comprising (100) and (111) facets with similar boron concentrations and resistivities and evaluated their electrochemical properties. Experimental results and theoretical calculations revealed that (100)-oriented single-crystal BDD has a wider space charge layer than (111)-oriented BDD, resulting in a slower response. Furthermore, isolated single-crystal microparticles of BDD with exposed (100) and (111) crystal facets were grown, and we studied the electrochemical properties of the respective facets by combination with hopping-mode scanning electrochemical cell microscopy. We also systematically investigated how the boron concentration and sp2 species affect the electrochemical properties. The results showed that the appropriate composition (boron and sp2 species level) is dependent on the application. The transmission electron microscopy images and electron energy loss spectra of highly boron-doped BDD are shown, and the relationship between the composition and electrochemical properties is discussed. Finally, we investigated in detail the effect of the sp2 component on lowdoped BDD. Surprisingly, although the sp2 component is usually expected to induce a narrowing of the potential window and an increase in the charging current, low-doped BDD showed the opposite trend depending on the degree of sp2 carbon. The results and discussion presented in this Account will hopefully promote a better understanding of the fundamentals of BDD electrodes and be useful for the optimal development of electrodes for future applications.
引用
收藏
页码:3605 / 3615
页数:11
相关论文
共 44 条
[1]   Interface dipoles arising from self-assembled monolayers on gold: UV-photoemission studies of alkanethiols and partially fluorinated alkanethiols [J].
Alloway, DM ;
Hofmann, M ;
Smith, DL ;
Gruhn, NE ;
Graham, AL ;
Colorado, R ;
Wysocki, VH ;
Lee, TR ;
Lee, PA ;
Armstrong, NR .
JOURNAL OF PHYSICAL CHEMISTRY B, 2003, 107 (42) :11690-11699
[2]   THERMAL HYDROGENATION OF DIAMOND SURFACES STUDIED BY DIFFUSE REFLECTANCE FOURIER-TRANSFORM INFRARED, TEMPERATURE-PROGRAMMED DESORPTION AND LASER RAMAN-SPECTROSCOPY [J].
ANDO, T ;
ISHII, M ;
KAMO, M ;
SATO, Y .
JOURNAL OF THE CHEMICAL SOCIETY-FARADAY TRANSACTIONS, 1993, 89 (11) :1783-1789
[3]   FOURIER-TRANSFORM INFRARED PHOTOACOUSTIC STUDIES OF HYDROGENATED DIAMOND SURFACES [J].
ANDO, T ;
INOUE, S ;
ISHII, M ;
KAMO, M ;
SATO, Y ;
YAMADA, O ;
NAKANO, T .
JOURNAL OF THE CHEMICAL SOCIETY-FARADAY TRANSACTIONS, 1993, 89 (04) :749-751
[4]   VAPOR-PHASE OXIDATION OF DIAMOND SURFACES IN O2 STUDIED BY DIFFUSE-REFLECTANCE FOURIER-TRANSFORM INFRARED AND TEMPERATURE-PROGRAMMED DESORPTION SPECTROSCOPY [J].
ANDO, T ;
YAMAMOTO, K ;
ISHII, M ;
KAMO, M ;
SATO, Y .
JOURNAL OF THE CHEMICAL SOCIETY-FARADAY TRANSACTIONS, 1993, 89 (19) :3635-3640
[5]   Nanoscale Reactivity Mapping of a Single-Crystal Boron-Doped Diamond Particle [J].
Ando, Tomohiro ;
Asai, Kai ;
Macpherson, Julie ;
Einaga, Yasuaki ;
Fukuma, Takeshi ;
Takahashi, Yasufumi .
ANALYTICAL CHEMISTRY, 2021, 93 (14) :5831-5838
[6]   Potential-dependent reorientation of water molecules at an electrode/electrolyte interface studied by surface-enhanced infrared absorption spectroscopy [J].
Ataka, K ;
Yotsuyanagi, T ;
Osawa, M .
JOURNAL OF PHYSICAL CHEMISTRY, 1996, 100 (25) :10664-10672
[7]   Hydrogen evolution on diamond electrodes by the volmer-Heyrovsky mechanism [J].
Cai, Yu ;
Anderson, Alfred B. ;
Angus, John C. ;
Kostadinov, Lubomir N. .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2007, 154 (02) :F36-F43
[8]   Charge transfer equilibria between diamond and an aqueous oxygen electrochemical redox couple [J].
Chakrapani, Vidhya ;
Angus, John C. ;
Anderson, Alfred B. ;
Wolter, Scott D. ;
Stoner, Brian R. ;
Sumanasekera, Gamini U. .
SCIENCE, 2007, 318 (5855) :1424-1430
[9]   Understanding anodic wear at boron doped diamond film electrodes [J].
Chaplin, Brian P. ;
Hubler, David K. ;
Farrell, James .
ELECTROCHIMICA ACTA, 2013, 89 :122-131
[10]   Boron Doped Diamond: A Designer Electrode Material for the Twenty-First Century [J].
Cobb, Samuel J. ;
Ayres, Zoe J. ;
Macpherson, Julie V. .
ANNUAL REVIEW OF ANALYTICAL CHEMISTRY, VOL 11, 2018, 11 :463-484