Model-based clustering for flow and mass cytometry data with clinical information

被引:5
作者
Abe, Ko [1 ]
Minoura, Kodai [1 ,2 ]
Maeda, Yuka [3 ,4 ,5 ]
Nishikawa, Hiroyoshi [2 ,3 ,4 ,5 ]
Shimamura, Teppei [1 ]
机构
[1] Nagoya Univ, Grad Sch Med, Div Syst Biol, Showa Ku, 65 Tsurumai Cho, Nagoya, Aichi 4668550, Japan
[2] Nagoya Univ, Grad Sch Med, Div Immunol, Showa Ku, 65 Tsurumai Cho, Nagoya, Aichi 4668550, Japan
[3] Natl Canc Ctr, EPOC, Res Inst, Div Canc Immunol,Chuo Ku, Tsukiji 5-1-1, Kashiwa, Chiba, Japan
[4] Kashiwanoha 6-5-1, Tokyo 1040045, Japan
[5] Kashiwanoha 6-5-1, Chiba 2778577, Japan
关键词
Flow cytomety; Mass cytometory; Bayesian mixture model; Stochastic EM algorithm; DIAGNOSIS; CELLS;
D O I
10.1186/s12859-020-03671-7
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
BackgroundHigh-dimensional flow cytometry and mass cytometry allow systemic-level characterization of more than 10 protein profiles at single-cell resolution and provide a much broader landscape in many biological applications, such as disease diagnosis and prediction of clinical outcome. When associating clinical information with cytometry data, traditional approaches require two distinct steps for identification of cell populations and statistical test to determine whether the difference between two population proportions is significant. These two-step approaches can lead to information loss and analysis bias.ResultsWe propose a novel statistical framework, called LAMBDA (Latent Allocation Model with Bayesian Data Analysis), for simultaneous identification of unknown cell populations and discovery of associations between these populations and clinical information. LAMBDA uses specified probabilistic models designed for modeling the different distribution information for flow or mass cytometry data, respectively. We use a zero-inflated distribution for the mass cytometry data based the characteristics of the data. A simulation study confirms the usefulness of this model by evaluating the accuracy of the estimated parameters. We also demonstrate that LAMBDA can identify associations between cell populations and their clinical outcomes by analyzing real data. LAMBDA is implemented in R and is available from GitHub (https://github.com/abikoushi/lambda).
引用
收藏
页数:15
相关论文
共 16 条
[1]   Flow Cytometry, a Versatile Tool for Diagnosis and Monitoring of Primary Immunodeficiencies [J].
Abraham, Roshini S. ;
Aubert, Geraldine .
CLINICAL AND VACCINE IMMUNOLOGY, 2016, 23 (04) :254-271
[2]   T-cell regulation by CD28 and CTLA-4 [J].
Alegre, ML ;
Frauwirth, KA ;
Thompson, CB .
NATURE REVIEWS IMMUNOLOGY, 2001, 1 (03) :220-228
[3]   Single-Cell Mass Cytometry of Differential Immune and Drug Responses Across a Human Hematopoietic Continuum [J].
Bendall, Sean C. ;
Simonds, Erin F. ;
Qiu, Peng ;
Amir, El-ad D. ;
Krutzik, Peter O. ;
Finck, Rachel ;
Bruggner, Robert V. ;
Melamed, Rachel ;
Trejo, Angelica ;
Ornatsky, Olga I. ;
Balderas, Robert S. ;
Plevritis, Sylvia K. ;
Sachs, Karen ;
Pe'er, Dana ;
Tanner, Scott D. ;
Nolan, Garry P. .
SCIENCE, 2011, 332 (6030) :687-696
[4]   Selective expansion of a subset of exhausted CD8 T cells by αPD-L1 blockade [J].
Blackburn, Shawn D. ;
Shin, Haina ;
Freeman, Gordon J. ;
Wherry, E. John .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2008, 105 (39) :15016-15021
[5]   Automated identification of stratifying signatures in cellular subpopulations [J].
Bruggner, Robert V. ;
Bodenmiller, Bernd ;
Dill, David L. ;
Tibshirani, Robert J. ;
Nolan, Garry P. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2014, 111 (26) :E2770-E2777
[6]   Conditional Gaussian mixture modelling for dietary pattern analysis [J].
Fahey, Michael T. ;
Thane, Christopher W. ;
Bramwell, Gemma D. ;
Coward, W. Andy .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES A-STATISTICS IN SOCIETY, 2007, 170 :149-166
[7]   Regulatory mechanisms in T cell receptor signalling [J].
Gaud, Guillaume ;
Lesourne, Renaud ;
Love, Paul E. .
NATURE REVIEWS IMMUNOLOGY, 2018, 18 (08) :485-497
[8]   Aqueous-Processed Polymer/Nanocrystal Hybrid Solar Cells with Double-Side Bulk Heterojunction [J].
Jin, Gan ;
Chen, Nannan ;
Zeng, Qingsen ;
Liu, Fangyuan ;
Yuan, Wei ;
Xiang, Siyuan ;
Feng, Tanglue ;
Du, Xiaohang ;
Ji, Tianjiao ;
Wang, Lijing ;
Wang, Yaohua ;
Sun, Henan ;
Sun, Haizhu ;
Yang, Bai .
ADVANCED ENERGY MATERIALS, 2018, 8 (08)
[9]  
Lun A, 2017, BIOCVIEWS FLOWCYTOME
[10]   Overcoming T cell exhaustion in infection and cancer [J].
Pauken, Kristen E. ;
Wherry, E. John .
TRENDS IN IMMUNOLOGY, 2015, 36 (04) :265-276