Numerical solution of nonlinear mixed Fredholm-Volterra integro-differential equations of fractional order by Bernoulli wavelets

被引:0
作者
Keshavarz, Elham [1 ]
Ordokhani, Yadollah [1 ]
Razzaghi, Mohsen [2 ]
机构
[1] Alzahra Univ, Fac Math Sci, Dept Math, Tehran, Iran
[2] Mississippi State Univ, Dept Math & Stat, Mississippi State, MS 39762 USA
来源
COMPUTATIONAL METHODS FOR DIFFERENTIAL EQUATIONS | 2019年 / 7卷 / 02期
基金
美国国家科学基金会;
关键词
Bernoulli wavelets; Fractional calculus; Fredholm-Volterra integro-differential equations; Caputo derivative; Operational matrix; HOMOTOPY-PERTURBATION; OPERATIONAL MATRICES;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, a numerical method for solving a class of nonlinear mixed Fredholm-Volterra integro-differential equations of fractional order is presented. The method is based upon Bernoulli wavelets approximations. The operational matrix of fractional order integration for Bernoulli wavelets is utilized to reduce the solution of the nonlinear fractional integro-differential equations to system of algebraic equations. Illustrative examples are included to demonstrate the efficiency and accuracy of the method.
引用
收藏
页码:163 / 176
页数:14
相关论文
共 36 条
[11]  
Jerri A.J., 1971, Introduction to Integral Equations with Applications
[12]   The Taylor wavelets method for solving the initial and boundary value problems of Bratu-type equations [J].
Keshavarz, E. ;
Ordokhani, Y. ;
Razzaghi, M. .
APPLIED NUMERICAL MATHEMATICS, 2018, 128 :205-216
[13]   A numerical solution for fractional optimal control problems via Bernoulli polynomials [J].
Keshavarz, E. ;
Ordokhani, Y. ;
Razzaghi, M. .
JOURNAL OF VIBRATION AND CONTROL, 2016, 22 (18) :3889-3903
[14]   Bernoulli wavelet operational matrix of fractional order integration and its applications in solving the fractional order differential equations [J].
Keshavarz, E. ;
Ordokhani, Y. ;
Razzaghi, M. .
APPLIED MATHEMATICAL MODELLING, 2014, 38 (24) :6038-6051
[15]  
Keshavarz E., 2016, MATH RES, V2, P17
[16]   On the approximate solutions for system of fractional integro-differential equations using Chebyshev pseudo-spectral, method [J].
Khader, M. M. ;
Sweilam, N. H. .
APPLIED MATHEMATICAL MODELLING, 2013, 37 (24) :9819-9828
[18]  
Khader M.M., 2013, J. Egyptian Math. Soc, V21, P32
[19]  
Kilbas A. A., 2006, Theory and Applications of Fractional Differential Equations, DOI DOI 10.1016/S0304-0208(06)80001-0
[20]   Kronecker operational matrices for fractional calculus and some applications [J].
Kilicman, Adem ;
Al Zhour, Zeyad Abdel Aziz .
APPLIED MATHEMATICS AND COMPUTATION, 2007, 187 (01) :250-265