Multiscale Decoding for Reliable Brain-Machine Interface Performance Over Time

被引:0
作者
Hsieh, Han-Lin [1 ]
Wong, Yan T. [2 ]
Pesaran, Bijan [3 ]
Shanechi, Maryam M. [1 ]
机构
[1] Univ Southern Calif, Dept Elect Engn, Los Angeles, CA 90089 USA
[2] Monash Univ, Dept Physiol & Elect & Comp Syst Engn, Melbourne, Vic, Australia
[3] NYU, Ctr Neural Sci, New York, NY 10003 USA
来源
2017 39TH ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY (EMBC) | 2017年
关键词
LOCAL-FIELD POTENTIALS; MOVEMENT; CORTEX;
D O I
暂无
中图分类号
Q6 [生物物理学];
学科分类号
071011 ;
摘要
Recordings from invasive implants can degrade over time, resulting in a loss of spiking activity for some electrodes. For brain-machine interfaces (BMI), such a signal degradation lowers control performance. Achieving reliable performance over time is critical for BMI clinical viability. One approach to improve BMI longevity is to simultaneously use spikes and other recording modalities such as local field potentials (LFP), which are more robust to signal degradation over time. We have developed a multiscale decoder that can simultaneously model the different statistical profiles of multiscale spike/LFP activity (discrete spikes vs. continuous LFP). This decoder can also run at multiple time-scales (millisecond for spikes vs. tens of milliseconds for LFP). Here, we validate the multiscale decoder for estimating the movement of 7 major upper-arm joint angles in a non-human primate (NHP) during a 3D reach-to-grasp task. The multiscale decoder uses motor cortical spike/LFP recordings as its input. We show that the multiscale decoder can improve decoding accuracy by adding information from LFP to spikes, while running at the fast millisecond time-scale of the spiking activity. Moreover, this improvement is achieved using relatively few LFP channels, demonstrating the robustness of the approach. These results suggest that using multiscale decoders has the potential to improve the reliability and longevity of BMIs.
引用
收藏
页码:197 / 200
页数:4
相关论文
共 14 条
[1]   OpenSim: open-source software to create and analyze dynamic Simulations of movement [J].
Delp, Scott L. ;
Anderson, Frank C. ;
Arnold, Allison S. ;
Loan, Peter ;
Habib, Ayman ;
John, Chand T. ;
Guendelman, Eran ;
Thelen, Darryl G. .
IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2007, 54 (11) :1940-1950
[2]   Local field potentials allow accurate decoding of muscle activity [J].
Flint, Robert D. ;
Ethier, Christian ;
Oby, Emily R. ;
Miller, Lee E. ;
Slutzky, Marc W. .
JOURNAL OF NEUROPHYSIOLOGY, 2012, 108 (01) :18-24
[3]  
Hsieh HL, 2016, IEEE ENG MED BIO, P6361, DOI 10.1109/EMBC.2016.7592183
[4]  
Hsieh HL, 2015, IEEE ENG MED BIO, P1667, DOI 10.1109/EMBC.2015.7318696
[5]   Brain Control of Movement Execution Onset Using Local Field Potentials in Posterior Parietal Cortex [J].
Hwang, Eun Jung ;
Andersen, Richard A. .
JOURNAL OF NEUROSCIENCE, 2009, 29 (45) :14363-14370
[6]   Optimizing the Decoding of Movement Goals from Local Field Potentials in Macaque Cortex [J].
Markowitz, David A. ;
Wong, Yan T. ;
Gray, Charles M. ;
Pesaran, Bijan .
JOURNAL OF NEUROSCIENCE, 2011, 31 (50) :18412-18422
[7]   invasive or noninvasive: understanding brain-machine interface technology [J].
Millan, Jose del R. ;
Carmena, Jose M. .
IEEE ENGINEERING IN MEDICINE AND BIOLOGY MAGAZINE, 2010, 29 (01) :16-22
[8]   Rapid control and feedback rates enhance neuroprosthetic control [J].
Shanechi, Maryam M. ;
Orsborn, Amy L. ;
Moorman, Helene G. ;
Gowda, Suraj ;
Dangi, Siddharth ;
Carmena, Jose M. .
NATURE COMMUNICATIONS, 2017, 8
[9]   Robust Brain-Machine Interface Design Using Optimal Feedback Control Modeling and Adaptive Point Process Filtering [J].
Shanechi, Maryam M. ;
Orsborn, Amy L. ;
Carmena, Jose M. .
PLOS COMPUTATIONAL BIOLOGY, 2016, 12 (04)
[10]   A Real-Time Brain-Machine Interface Combining Motor Target and Trajectory Intent Using an Optimal Feedback Control Design [J].
Shanechi, Maryam M. ;
Williams, Ziv M. ;
Wornell, Gregory W. ;
Hu, Rollin C. ;
Powers, Marissa ;
Brown, Emery N. .
PLOS ONE, 2013, 8 (04)