Asymptotically Optimal Optical Orthogonal Codes With New Parameters

被引:9
作者
Chung, Jin-Ho [1 ]
Yang, Kyeongcheol [2 ]
机构
[1] UNIST, Sch Elect & Comp Engn, Ulsan 689798, South Korea
[2] Pohang Univ Sci & Technol POSTECH, Dept Elect Engn, Pohang 790784, Gyungbuk, South Korea
基金
新加坡国家研究基金会;
关键词
Correlation; finite fields; optical fiber networks; optical orthogonal codes (OOCs); ring of integers modulo n; MULTIPLE-ACCESS TECHNIQUES; COMBINATORIAL CONSTRUCTIONS; FIBER NETWORKS; FAMILIES; BOUNDS;
D O I
10.1109/TIT.2013.2247092
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Optical orthogonal codes (OOCs) are widely used as spreading codes in optical fiber networks. An (N, w, lambda(a), lambda(c))-OOC with size L is a family of L {0, 1}-sequences with length N, weight w, maximum autocorrelation lambda(a), and maximum cross correlation lambda(c). In this paper, we present two new constructions for OOCs with lambda(a) = lambda(c) = 1 which are asymptotically optimal with respect to the Johnson bound. We first construct an asymptotically optimal (Mp(n), M, 1, 1)-OOC with size (p(n) - 1)/M by using the structure of Z(pn), the ring of integers modulo p(n), where p is an odd prime with M vertical bar p - 1, and n is a positive integer. We then present another asymptotically optimal (Mp(1) ... p(k), M, 1, 1)-OOC with size (p(1) ... p(k) - 1)/M from a product of k finite fields, where p(i) is an odd prime and M is a positive integer such that M vertical bar p(i) - 1 for 1 <= i <= k. In particular, it is optimal in the case that k = 1 and (M - 1)(2) > p(1) - 1.
引用
收藏
页码:3999 / 4005
页数:7
相关论文
共 24 条
[1]   Cyclic designs with block size 4 and related optimal optical orthogonal codes [J].
Buratti, M .
DESIGNS CODES AND CRYPTOGRAPHY, 2002, 26 (1-3) :111-125
[2]   Combinatorial constructions of optimal optical orthogonal codes with weight 4 [J].
Chang, YX ;
Fuji-Hara, R ;
Miao, Y .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2003, 49 (05) :1283-1292
[3]   A new recursive construction for optical orthogonal codes [J].
Chu, WS ;
Golomb, SW .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2003, 49 (11) :3072-3076
[4]   OPTICAL ORTHOGONAL CODES - DESIGN, ANALYSIS, AND APPLICATIONS [J].
CHUNG, FRK ;
SALEHI, JA ;
WEI, VK .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1989, 35 (03) :595-604
[5]   OPTICAL ORTHOGONAL CODES - NEW BOUNDS AND AN OPTIMAL CONSTRUCTION [J].
CHUNG, H ;
KUMAR, PV .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1990, 36 (04) :866-873
[6]   k-Fold Cyclotomy and Its Application to Frequency-Hopping Sequences [J].
Chung, Jin-Ho ;
Yang, Kyeongcheol .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2011, 57 (04) :2306-2317
[7]  
Fan P., 1996, SEQUENCE DESIGN COMM
[8]   Optical orthogonal codes: Their bounds and new optimal constructions [J].
Fuji-Hara, R ;
Miao, Y .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2000, 46 (07) :2396-2406
[9]   Constructions for optimal (v, 4, 1) optical orthogonal codes [J].
Ge, GN ;
Yin, JX .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2001, 47 (07) :2998-3004
[10]   A NEW UPPER BOUND FOR ERROR-CORRECTING CODES [J].
JOHNSON, SM .
IRE TRANSACTIONS ON INFORMATION THEORY, 1962, 8 (03) :203-207