Low temperature heat capacity of bulk and nanophase ZnO and Zn1-xCoxO wurtzite phases

被引:22
作者
Ma, Chengcheng [1 ,2 ]
Shi, Quan [3 ]
Woodfield, Brian F. [3 ]
Navrotsky, Alexandra [1 ,2 ]
机构
[1] Univ Calif Davis, Peter A Rock Thermochem Lab, Davis, CA 95616 USA
[2] Univ Calif Davis, NEAT ORU, Davis, CA 95616 USA
[3] Brigham Young Univ, Dept Chem & Biochem, Provo, UT 84602 USA
关键词
ZnO-CoO; Nanoparticles; Surface entropy; Heat capacity; PPMS; THERMODYNAMIC FUNCTIONS; ZINC-OXIDE; DOPED ZNO; FERROMAGNETISM; FILMS; WATER;
D O I
10.1016/j.jct.2013.01.004
中图分类号
O414.1 [热力学];
学科分类号
摘要
The low temperature heat capacity of the ZnO-CoO solid solution system was measured from 2 to 300 K using the heat capacity option of a Quantum Design Physical Property Measurement System (PPMS). The thermodynamic functions in this temperature range were derived by curve fitting. The standard entropies of bulk ZnO and bulk ZnO-CoO (wurtzite, 18 mol% CoO) at T = 298.15 K were calculated to be (43.1 +/- 0.4) J . mol (1) . K (1) and (45.2 +/- 0.5) J . mol (1) . K (1), respectively. The surface entropy of ZnO was evaluated to be (0.02 +/- 0.01) mJ . K (1) . m (2), which is essentially zero. No sharp magnetic transitions were observed in the solid solution samples. The nanophase solid solution, 12 mol% CoO, appears to bind H2O on its surface more strongly than ZnO. (C) 2013 Elsevier Ltd. All rights reserved.
引用
收藏
页码:191 / 196
页数:6
相关论文
共 18 条
[1]   Surface water and the origin of the positive excess specific heat for 7 nm rutile and anatase nanoparticles [J].
Boerio-Goates, J ;
Li, GS ;
Li, LP ;
Walker, TF ;
Parry, T ;
Woodfield, BF .
NANO LETTERS, 2006, 6 (04) :750-754
[2]   Zener model description of ferromagnetism in zinc-blende magnetic semiconductors [J].
Dietl, T ;
Ohno, H ;
Matsukura, F ;
Cibert, J ;
Ferrand, D .
SCIENCE, 2000, 287 (5455) :1019-1022
[3]   Low-Temperature Heat Capacity and Thermal Behavior of Zn0.98Co0.02O in the High-Temperature Region [J].
Gavrichev, K. S. ;
Tyurin, A. V. ;
Ryumin, M. A. ;
Khoroshilov, A. V. ;
Nipan, G. D. ;
Ketsko, V. A. ;
Kol'tsova, T. N. ;
Pinus, I. Yu. ;
Buzanov, G. A. ;
Votinova, N. A. .
RUSSIAN JOURNAL OF INORGANIC CHEMISTRY, 2009, 54 (01) :1-5
[4]   Dynamics of water confined on a TiO2 (Anatase) surface [J].
Levchenko, Andrey A. ;
Kolesnikov, Alexander I. ;
Ross, Nancy L. ;
Boerio-Goates, Juliana ;
Woodfield, Brian F. ;
Li, Guangshe ;
Navrotsky, Alexandra .
JOURNAL OF PHYSICAL CHEMISTRY A, 2007, 111 (49) :12584-12588
[5]   Thermodynamics of the CoO-ZnO System at Bulk and Nanoscale [J].
Ma, Chengcheng ;
Navrotsky, Alexandra .
CHEMISTRY OF MATERIALS, 2012, 24 (12) :2311-2315
[6]   The free energy of formation of zinc oxide [J].
Maier, CG ;
Parks, GS ;
Anderson, CT .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1926, 48 :2564-2576
[7]   The heat capacity at low temperatures of zinc oxide and of cadmium oxide [J].
Millar, RW .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1928, 50 :2653-2656
[8]   A comprehensive review of ZnO materials and devices -: art. no. 041301 [J].
Ozgür, U ;
Alivov, YI ;
Liu, C ;
Teke, A ;
Reshchikov, MA ;
Dogan, S ;
Avrutin, V ;
Cho, SJ ;
Morkoç, H .
JOURNAL OF APPLIED PHYSICS, 2005, 98 (04) :1-103
[9]   HEAT-CAPACITIES AND ENTROPIES AT 298.15-K OF MGTIO3 (GEIKIELITE), ZNO (ZINCITE), AND ZNCO3 (SMITHSONITE) [J].
ROBIE, RA ;
HASELTON, HT ;
HEMINGWAY, BS .
JOURNAL OF CHEMICAL THERMODYNAMICS, 1989, 21 (07) :743-749
[10]   Heat capacity of ZnO: Isotope effects [J].
Serrano, J ;
Kremer, RK ;
Cardona, M ;
Siegle, G ;
Romero, AH ;
Lauck, R .
PHYSICAL REVIEW B, 2006, 73 (09)