Neural network approach for semivectorial bilevel programming problem

被引:1
作者
Lv, Yibing [1 ]
机构
[1] Yangtze Univ, Sch Informat & Math, Jinzhou, Peoples R China
来源
2012 4TH INTERNATIONAL CONFERENCE ON INTELLIGENT HUMAN-MACHINE SYSTEMS AND CYBERNETICS (IHMSC), VOL 2 | 2012年
关键词
semivectorial bilevel programming problem; neural network; asymptotic stability; optimal solution; PENALTY;
D O I
10.1109/IHMSC.2012.103
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
A novel neural network approach is proposed for solving semivectorial bilevel programming problem, where the upper level is a scalar-valued optimization problem and the lower level is the linear multiobjective programming. The proposed neural network is proved to be Lyapunov stable and capable of generating optimal solution to the semivectorial BP problem. The numerical result shows that the neural network approach is feasible and efficient.
引用
收藏
页码:30 / 33
页数:4
相关论文
共 9 条
[1]   An exact penalty on bilevel programs with linear vector optimization lower level [J].
Ankhili, Z. ;
Mansouri, A. .
EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2009, 197 (01) :36-41
[2]  
[Anonymous], 1998, Practical bi-level optimization
[3]   Semivectorial bilevel optimization problem: Penalty approach [J].
Bonnel, H. ;
Morgan, J. .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2006, 131 (03) :365-382
[4]  
Bonnel H., 2006, Pac. J. Optim., V2, P447
[5]  
Dempe S., 2002, Foundations of Bilevel Programming
[6]   A smoothing method for mathematical programs with equilibrium constraints [J].
Facchinei, F ;
Jiang, HY ;
Qi, LQ .
MATHEMATICAL PROGRAMMING, 1999, 85 (01) :107-134
[7]   Decentralized multi-objective bilevel decision making with fuzzy demands [J].
Zhang, Guangquan ;
Lu, Jie ;
Dillon, Tharam .
KNOWLEDGE-BASED SYSTEMS, 2007, 20 (05) :495-507
[8]   LAGRANGE PROGRAMMING NEURAL NETWORKS [J].
ZHANG, SW ;
CONSTANTINIDES, AG .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II-ANALOG AND DIGITAL SIGNAL PROCESSING, 1992, 39 (07) :441-452
[9]  
Zheng Y., J APPL MATH COMPUTIN