A bundle Bregman proximal method for convex nondifferentiable minimization

被引:25
作者
Kiwiel, KC [1 ]
机构
[1] Polish Acad Sci, Syst Res Inst, PL-01447 Warsaw, Poland
关键词
convex programming; nondifferentiable optimization; proximal methods; bundle methods; Bregman functions; B-functions;
D O I
10.1007/s101070050056
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
We give a method for minimizing a convex function f that generates a sequence {x(k)} by taking x(k) to be an approximate minimizer of f(k) + D-h(., xk(-1))/t(k), where f(k) is a piecewise linear model of f constructed from accumulated subgradient linearizations of f, Dh is the D-function of a generalized Bregman function h and t(k) > 0. Convergence under implementable criteria is established by extending our recent framework of Bregman proximal minimization, which is of independent interest, e.g., for nonquadratic multiplier methods for constrained minimization. In particular, we provide new insights into the convergence properties of bundle methods based on h = 1/2\.\(2).
引用
收藏
页码:241 / 258
页数:18
相关论文
共 50 条
[31]   Composite proximal bundle method [J].
Claudia Sagastizábal .
Mathematical Programming, 2013, 140 :189-233
[32]   Composite proximal bundle method [J].
Sagastizabal, Claudia .
MATHEMATICAL PROGRAMMING, 2013, 140 (01) :189-233
[33]   Proximal bundle methods for generalized fractional programs with ratios of difference of convex functions [J].
Ghazi, Abdelouafi ;
Roubi, Ahmed .
RAIRO-OPERATIONS RESEARCH, 2025, 59 (04) :1749-1774
[34]   Proximal Point Methods for Quasiconvex and Convex Functions with Bregman Distances on Hadamard Manifolds [J].
Quiroz, E. A. Papa ;
Oliveira, P. Roberto .
JOURNAL OF CONVEX ANALYSIS, 2009, 16 (01) :49-69
[35]   Nonlinear proximal decomposition method for convex programming [J].
Kyono, M ;
Fukushima, M .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2000, 106 (02) :357-372
[36]   Nonlinear Proximal Decomposition Method for Convex Programming [J].
M. Kyono ;
M. Fukushima .
Journal of Optimization Theory and Applications, 2000, 106 :357-372
[37]   CONVERGENCE OF A GENERALIZED SUBGRADIENT METHOD FOR NONDIFFERENTIABLE CONVEX-OPTIMIZATION [J].
KIM, S ;
AHN, H .
MATHEMATICAL PROGRAMMING, 1991, 50 (01) :75-80
[38]   Restricted step and Levenberg-Marquardt techniques in proximal bundle methods for nonconvex nondifferentiable optimization [J].
Kiwiel, KC .
SIAM JOURNAL ON OPTIMIZATION, 1996, 6 (01) :227-249
[40]   An inexact proximal method for quasiconvex minimization [J].
Papa Quiroz, E. A. ;
Mallma Ramirez, L. ;
Oliveira, P. R. .
EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2015, 246 (03) :721-729