Anomalous Thermodynamics at the Microscale

被引:95
作者
Celani, Antonio [1 ,2 ]
Bo, Stefano [3 ,4 ,5 ,6 ]
Eichhorn, Ralf [6 ]
Aurell, Erik [5 ,7 ,8 ]
机构
[1] Inst Pasteur, F-75015 Paris, France
[2] CNRS, UMR 3525, F-75015 Paris, France
[3] IRCC Inst Canc Res Candiolo, I-10060 Turin, Italy
[4] Ist Nazl Fis Nucl, Sez Torino, I-10125 Turin, Italy
[5] KTH Royal Inst Technol, AlbaNova Univ Ctr, Dept Computat Biol, SE-10691 Stockholm, Sweden
[6] NORDITA, SE-10691 Stockholm, Sweden
[7] KTH Royal Inst Technol, ACCESS Linnaeus Ctr, SE-10044 Stockholm, Sweden
[8] Aalto Univ, Dept Informat & Comp Sci, FI-00076 Aalto, Finland
关键词
Phase space methods;
D O I
10.1103/PhysRevLett.109.260603
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Particle motion at the microscale is an incessant tug-of-war between thermal fluctuations and applied forces on one side and the strong resistance exerted by fluid viscosity on the other. Friction is so strong that completely neglecting inertia-the overdamped approximation-gives an excellent effective description of the actual particle mechanics. In sharp contrast to this result, here we show that the overdamped approximation dramatically fails when thermodynamic quantities such as the entropy production in the environment are considered, in the presence of temperature gradients. In the limit of vanishingly small, yet finite, inertia, we find that the entropy production is dominated by a contribution that is anomalous, i.e., has no counterpart in the overdamped approximation. This phenomenon, which we call an entropic anomaly, is due to a symmetry breaking that occurs when moving to the small, finite inertia limit. Anomalous entropy production is traced back to futile phase-space cyclic trajectories displaying a fast downgradient sweep followed by a slow upgradient return to the original position. DOI: 10.1103/PhysRevLett.109.260603
引用
收藏
页数:4
相关论文
共 20 条
  • [1] Experimental verification of Landauer's principle linking information and thermodynamics
    Berut, Antoine
    Arakelyan, Artak
    Petrosyan, Artyom
    Ciliberto, Sergio
    Dillenschneider, Raoul
    Lutz, Eric
    [J]. NATURE, 2012, 483 (7388) : 187 - U1500
  • [2] Blickle V, 2012, NAT PHYS, V8, P143, DOI [10.1038/NPHYS2163, 10.1038/nphys2163]
  • [3] High friction limit of the Kramers equation: The multiple time-scale approach
    Bocquet, L
    [J]. AMERICAN JOURNAL OF PHYSICS, 1997, 65 (02) : 140 - 144
  • [4] Quantum anomaly in molecular physics
    Camblong, HE
    Epele, LN
    Fanchiotti, H
    Canal, CAG
    [J]. PHYSICAL REVIEW LETTERS, 2001, 87 (22) : art. no. - 220402
  • [5] Fluctuation relations for diffusion processes
    Chetrite, Raphael
    Gawedzki, Krzysztof
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2008, 282 (02) : 469 - 518
  • [6] de Groot S.R., 1984, NONEQUILIBRIUM THERM
  • [7] Efficiency of Brownian heat engines
    Derényi, I
    Astumian, RD
    [J]. PHYSICAL REVIEW E, 1999, 59 (06) : R6219 - R6222
  • [8] Duplantier B, 2006, PROG MATH PHYS, V47, P201
  • [9] Dusenbery DB, 2009, LIVING AT MICRO SCAL
  • [10] Nonequilibrium fluctuations, fluctuation theorems, and counting statistics in quantum systems
    Esposito, Massimiliano
    Harbola, Upendra
    Mukamel, Shaul
    [J]. REVIEWS OF MODERN PHYSICS, 2009, 81 (04) : 1665 - 1702