A New Numerical Approach for Variable-Order Time-Fractional Modified Subdiffusion Equation via Riemann-Liouville Fractional Derivative

被引:0
作者
Fathima, Dowlath [1 ]
Naeem, Muhammad [2 ]
Ali, Umair [3 ]
Ganie, Abdul Hamid [4 ]
Abdullah, Farah Aini [5 ]
机构
[1] Saudi Elect Univ, Coll Sci & Theoret Studies, Basic Sci Dept, Jeddah 23442, Saudi Arabia
[2] Umm Al Qura Univ, Dept Math Appl Sci, Mecca 21955, Saudi Arabia
[3] Inst Space Technol, Dept Appl Math & Stat, POB 2750, Islamabad 44000, Pakistan
[4] Saudi Elect Univ, Coll Sci & Theoret Studies, Basic Sci Dept, Abha 61421, Saudi Arabia
[5] Univ Sains Malaysia, Sch Math Sci, George Town 11800, Malaysia
来源
SYMMETRY-BASEL | 2022年 / 14卷 / 11期
关键词
implicit difference scheme; variable-order fractional modified subdiffusion equation; stability; consistency; convergence;
D O I
10.3390/sym14112462
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Fractional differential equations describe nature adequately because of the symmetry properties that describe physical and biological processes. In this paper, a new approximation is found for the variable-order (VO) Riemann-Liouville fractional derivative (RLFD) operator; on that basis, an efficient numerical approach is formulated for VO time-fractional modified subdiffusion equations (TFMSDE). Complete theoretical analysis is performed, such as stability by the Fourier series, consistency, and convergence, and the feasibility of the proposed approach is also discussed. A numerical example illustrates that the proposed scheme demonstrates high accuracy, and that the obtained results are more feasible and accurate.
引用
收藏
页数:13
相关论文
共 50 条
[41]   Error Estimate of a Fully Discrete Local Discontinuous Galerkin Method for Variable-Order Time-Fractional Diffusion Equations [J].
Wei, Leilei ;
Zhai, Shuying ;
Zhang, Xindong .
COMMUNICATIONS ON APPLIED MATHEMATICS AND COMPUTATION, 2021, 3 (03) :429-443
[42]   Numerical simulation of a new two-dimensional variable-order fractional percolation equation in non-homogeneous porous media [J].
Chen, S. ;
Liu, F. ;
Burrage, K. .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2014, 68 (12) :2133-2141
[43]   Numerical simulation of a new two-dimensional variable-order fractional percolation equation in non-homogeneous porous media [J].
Chen, S. ;
Liu, F. ;
Burrage, K. .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2014, 67 (09) :1673-1681
[44]   Numerical simulation with the second order compact approximation of first order derivative for the modified fractional diffusion equation [J].
Chen, Y. ;
Chen, Chang-Ming .
APPLIED MATHEMATICS AND COMPUTATION, 2018, 320 :319-330
[45]   Numerical analysis of a new space-time variable fractional order advection-dispersion equation [J].
Zhang, H. ;
Liu, F. ;
Zhuang, P. ;
Turner, I. ;
Anh, V. .
APPLIED MATHEMATICS AND COMPUTATION, 2014, 242 :541-550
[46]   Local discontinuous Galerkin method for multi-term variable-order time fractional diffusion equation [J].
Wei, Leilei ;
Wang, Huanhuan .
MATHEMATICS AND COMPUTERS IN SIMULATION, 2023, 203 :685-698
[47]   Time-space variable-order fractional nonlinear system of thermoelasticity: numerical treatment [J].
Assiri, Taghreed A. .
ADVANCES IN DIFFERENCE EQUATIONS, 2020, 2020 (01)
[48]   Existence Results for Riemann-Liouville Fractional Di fferential Equations with Non-instantaneous Impulses (Fractional Derivative with Fixed Lower Bound at the Initial Time) [J].
Hristova, Snezhana ;
Ivanova, Krasimira .
SIXTH INTERNATIONAL CONFERENCE NEW TRENDS IN THE APPLICATIONS OF DIFFERENTIAL EQUATIONS IN SCIENCES (NTADES 2019), 2019, 2159
[49]   Numerical solution of fractional sub-diffusion and time-fractional diffusion-wave equations via fractional-order Legendre functions [J].
Hooshmandasl, M. R. ;
Heydari, M. H. ;
Cattani, C. .
EUROPEAN PHYSICAL JOURNAL PLUS, 2016, 131 (08)
[50]   A new numerical formulation for the generalized time-fractional Benjamin Bona Mohany Burgers' equation [J].
Chawla, Reetika ;
Deswal, Komal ;
Kumar, Devendra .
INTERNATIONAL JOURNAL OF NONLINEAR SCIENCES AND NUMERICAL SIMULATION, 2023, 24 (03) :883-898