A New Numerical Approach for Variable-Order Time-Fractional Modified Subdiffusion Equation via Riemann-Liouville Fractional Derivative

被引:0
作者
Fathima, Dowlath [1 ]
Naeem, Muhammad [2 ]
Ali, Umair [3 ]
Ganie, Abdul Hamid [4 ]
Abdullah, Farah Aini [5 ]
机构
[1] Saudi Elect Univ, Coll Sci & Theoret Studies, Basic Sci Dept, Jeddah 23442, Saudi Arabia
[2] Umm Al Qura Univ, Dept Math Appl Sci, Mecca 21955, Saudi Arabia
[3] Inst Space Technol, Dept Appl Math & Stat, POB 2750, Islamabad 44000, Pakistan
[4] Saudi Elect Univ, Coll Sci & Theoret Studies, Basic Sci Dept, Abha 61421, Saudi Arabia
[5] Univ Sains Malaysia, Sch Math Sci, George Town 11800, Malaysia
来源
SYMMETRY-BASEL | 2022年 / 14卷 / 11期
关键词
implicit difference scheme; variable-order fractional modified subdiffusion equation; stability; consistency; convergence;
D O I
10.3390/sym14112462
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Fractional differential equations describe nature adequately because of the symmetry properties that describe physical and biological processes. In this paper, a new approximation is found for the variable-order (VO) Riemann-Liouville fractional derivative (RLFD) operator; on that basis, an efficient numerical approach is formulated for VO time-fractional modified subdiffusion equations (TFMSDE). Complete theoretical analysis is performed, such as stability by the Fourier series, consistency, and convergence, and the feasibility of the proposed approach is also discussed. A numerical example illustrates that the proposed scheme demonstrates high accuracy, and that the obtained results are more feasible and accurate.
引用
收藏
页数:13
相关论文
共 50 条
[31]   A new Crank-Nicolson finite element method for the time-fractional subdiffusion equation [J].
Zeng, Fanhai ;
Li, Changpin .
APPLIED NUMERICAL MATHEMATICS, 2017, 121 :82-95
[32]   Numerical solution of variable fractional order advection-dispersion equation using Bernoulli wavelet method and new operational matrix of fractional order derivative [J].
Soltanpour Moghadam, Abolfazl ;
Arabameri, Maryam ;
Baleanu, Dumitru ;
Barfeie, Mahdiar .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2020, 43 (07) :3936-3953
[33]   A Numerical Technique to Solve Time-Fractional Delay Diffusion Wave Equation via Trigonometric Collocation Approach [J].
Chawla, Reetika ;
Kumar, Devendra ;
Qi, Haitao .
COMMUNICATIONS ON APPLIED MATHEMATICS AND COMPUTATION, 2025,
[34]   Stability and synchronization for Riemann-Liouville fractional-order time-delayed inertial neural networks [J].
Gu, Yajuan ;
Wang, Hu ;
Yu, Yongguang .
NEUROCOMPUTING, 2019, 340 :270-280
[35]   Riemann-Liouville fractional-order pantograph differential equation constrained by nonlocal and weighted pantograph integral equations [J].
El-Sayed, Ahmed M. A. ;
El-Sayed, Wagdy G. ;
Msaik, Kheria M. O. ;
Ebead, Hanaa R. .
AIMS MATHEMATICS, 2025, 10 (03) :4970-4991
[36]   TEMPORAL SECOND-ORDER FINITE DIFFERENCE SCHEMES FOR VARIABLE-ORDER TIME-FRACTIONAL WAVE EQUATIONS [J].
Du, Rui-lian ;
Sun, Zhi-zhong ;
Wang, Hong .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2022, 60 (01) :104-132
[37]   A high-order numerical technique for generalized time-fractional Fisher's equation [J].
Choudhary, Renu ;
Singh, Satpal ;
Kumar, Devendra .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2023, 46 (15) :16050-16071
[38]   High-order numerical algorithms for the time-fractional convection-diffusion equation [J].
Wang, Zhen .
INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2022, 99 (11) :2327-2348
[39]   ON THE STABILITY ANALYSIS OF THE TIME-FRACTIONAL VARIABLE ORDER KLEIN-GORDON EQUATION AND SOME NUMERICAL SIMULATIONS [J].
Deniz, Sinan .
COMMUNICATIONS FACULTY OF SCIENCES UNIVERSITY OF ANKARA-SERIES A1 MATHEMATICS AND STATISTICS, 2020, 69 (01) :981-992
[40]   Terminal value problem for Riemann-Liouville fractional differential equation in the variable exponent Lebesgue space Lp(.)$$ {L}∧{p(.)} $$ [J].
Refice, Ahmed ;
Souid, Mohammed Said ;
Guirao, Juan L. G. ;
Gunerhan, Hatira .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2025, 48 (07) :7316-7334