Electrolyte development for improved cycling performance of bismuth fluoride nanocomposite positive electrodes

被引:33
作者
Gmitter, Andrew J. [1 ]
Gural, John [1 ]
Amatucci, Glenn G. [1 ]
机构
[1] Rutgers State Univ, Energy Storage Res Grp, Dept Mat Sci & Engn, N Brunswick, NJ 08902 USA
关键词
Bismuth fluoride nanocomposite positive electrode; Conversion materials; Li-ion batteries; Adiponitrile; SEI additives; Electrolyte formulation; ELECTROCHEMICAL REDUCTION; LIQUID ELECTROLYTES; LITHIUM; ADDITIVES; CARBONATE; GRAPHITE; DECOMPOSITION; ISOCYANATE; VINYLENE; SULFITE;
D O I
10.1016/j.jpowsour.2012.05.104
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Interactions of the electrolyte with the bismuth fluoride nanocomposite positive electrode lead to capacity loss. When lithiated, the BiF3 positive electrode is highly reactive with ethylene carbonate (EC) and other cyclic organic carbonates used for forming effective solid-electrolyte interphases (SEIs) on carbonaceous negative electrodes. This reactivity poses problems for the development of a Li-ion cell. The aim of this work was to formulate electrolytes that could enable the functionality of BiF3 nanocomposite positive electrodes while also maintaining stability at the negative electrode/electrolyte interface. Adiponitrile (ADN) has been put forth as a compatible bulk solvent for the electrolyte, and a number of additives have been examined including cyclic organic carbonates, cyclic organic sulfur-containing compounds, and ethyl isocyanate. Along with an exceptional fundamental stability in the neat solvent, preliminary results demonstrated improved performance of BiF3 nanocomposite positive electrodes in Li-ion compatible ADN-based electrolytes. (C) 2012 Elsevier By. All rights reserved.
引用
收藏
页码:21 / 28
页数:8
相关论文
共 28 条
[1]  
[Anonymous], 2011, SCIFINDER WEB VERS
[2]   Bismuth fluoride nanocomposite as a positive electrode material for rechargeable lithium batteries [J].
Bervas, M ;
Badway, F ;
Klein, LC ;
Amatucci, GG .
ELECTROCHEMICAL AND SOLID STATE LETTERS, 2005, 8 (04) :A179-A183
[3]   STUDY ON ELECTROCHEMICAL BEHAVIOR OF LITHIUM IN ESTERS [J].
CAIOLA, A ;
SOHM, JC ;
FAUDOU, JY .
ELECTROCHIMICA ACTA, 1972, 17 (08) :1401-&
[4]   Effect of fluoroethylene carbonate additive on interfacial properties of silicon thin-film electrode [J].
Choi, Nam-Soon ;
Yew, Kyoung Han ;
Lee, Kyu Youl ;
Sung, Minseok ;
Kim, Ho ;
Kim, Sung-Soo .
JOURNAL OF POWER SOURCES, 2006, 161 (02) :1254-1259
[5]   First Principles Study of the Li-Bi-F Phase Diagram and Bismuth Fluoride Conversion Reactions with Lithium [J].
Doe, Robert E. ;
Persson, Kristin A. ;
Hautier, Geoffroy ;
Ceder, Gerbrand .
ELECTROCHEMICAL AND SOLID STATE LETTERS, 2009, 12 (07) :A125-A128
[6]  
Gmitter A.J., SUBSURFACE DIF UNPUB
[7]   High Concentration Dinitrile, 3-Alkoxypropionitrile, and Linear Carbonate Electrolytes Enabled by Vinylene and Monofluoroethylene Carbonate Additives [J].
Gmitter, Andrew J. ;
Plitz, I. ;
Amatucci, Glenn G. .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2012, 159 (04) :A370-A379
[8]   Formation, dynamics, and implication of solid electrolyte interphase in high voltage reversible conversion fluoride nanocomposites [J].
Gmitter, Andrew J. ;
Badway, Fadwa ;
Rangan, Sylvie ;
Bartynski, Robert A. ;
Halajko, Anna ;
Pereira, Nathalie ;
Amatucci, Glenn G. .
JOURNAL OF MATERIALS CHEMISTRY, 2010, 20 (20) :4149-4161
[9]   Theoretical studies of the solvent decomposition by lithium atoms in lithium-ion battery electrolyte [J].
Han, YK ;
Lee, SU ;
Ok, JH ;
Cho, JJ ;
Kim, HJ .
CHEMICAL PHYSICS LETTERS, 2002, 360 (3-4) :359-366
[10]   Experimental and theoretical studies on reduction mechanism of vinyl ethylene carbonate on graphite anode for lithium ion batteries [J].
Hu, YS ;
Kong, WH ;
Hong, L ;
Huang, XJ ;
Chen, LQ .
ELECTROCHEMISTRY COMMUNICATIONS, 2004, 6 (02) :126-131