A protection scheme based on conditional generative adversarial network and convolutional classifier for high impedance fault detection in distribution networks

被引:10
|
作者
Mohammadi, Amin [1 ]
Jannati, Mohsen [1 ]
Shams, Mohammadreza [2 ]
机构
[1] Univ Isfahan, Dept Elect Engn, Shahreza Campus, Esfahan, Iran
[2] Univ Isfahan, Dept Comp Engn, Shahreza Campus, Esfahan, Iran
关键词
High impedance fault; Fault detection; Distribution network; Conditional generative adversarial network; and convolutional classifier; DISTRIBUTION-SYSTEMS;
D O I
10.1016/j.epsr.2022.108633
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Low level current and similarity of High Impedance Faults (HIF) in respect of characteristics to other transient events have posed a critical challenge to the protection of distribution systems. In addition, the dependency of previous methods on large amounts of training data increases the simulation error rate, and preparing this amount of data is time-consuming. In this paper, a novel scheme based on conditional generative adversarial network (CGAN) and convolutional neural network (CNN) classifier techniques is proposed, that reduces this dependency and leads to acceptable classification accuracy. In the proposed method, a small amount of data is extracted from the under-study network as the real data. Then, the third harmonic angle of the current is extracted from the real data by an adaptive linear neuron (ADALINE) as an effective feature. The CGAN is performed to produce a large amount of pseudo data. At last, the fault data is separated from other transient network events via the CNN classifier. Five different scenarios are used to evaluate the proposed method on a 13bus IEEE network. The simulation results show that the Precision and Recall of distinguishing HIFs from other transient events is greater than 98% in all the scenarios. These results verify that the proposed scheme is very accurate despite the low dependency on input training data.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Leak detection and localization in water distribution networks using conditional deep convolutional generative adversarial networks
    Rajabi, Mohammad Mahdi
    Komeilian, Pooya
    Wan, Xi
    Farmani, Raziyeh
    WATER RESEARCH, 2023, 238
  • [2] Intelligent Fault Detection Scheme for Rolling Bearing Based on Generative Adversarial Network and AutoEncoders Using Convolutional Neural Network
    Rathore, Maan Singh
    Harsha, S. P.
    JOURNAL OF VIBRATION ENGINEERING & TECHNOLOGIES, 2024, : 8979 - 8991
  • [3] High Impedance Fault Detection Protection Scheme for Power Distribution Systems
    Moloi, Katleho
    Davidson, Innocent
    MATHEMATICS, 2022, 10 (22)
  • [4] An evaluation method of conditional deep convolutional generative adversarial networks for mechanical fault diagnosis
    Luo, Jia
    Huang, Jinying
    Ma, Jiancheng
    Li, Hongmei
    JVC/Journal of Vibration and Control, 2022, 28 (11-12): : 1379 - 1389
  • [5] A case study of conditional deep convolutional generative adversarial networks in machine fault diagnosis
    Luo, Jia
    Huang, Jinying
    Li, Hongmei
    JOURNAL OF INTELLIGENT MANUFACTURING, 2021, 32 (02) : 407 - 425
  • [6] An evaluation method of conditional deep convolutional generative adversarial networks for mechanical fault diagnosis
    Luo, Jia
    Huang, Jinying
    Ma, Jiancheng
    Li, Hongmei
    JOURNAL OF VIBRATION AND CONTROL, 2022, 28 (11-12) : 1379 - 1389
  • [7] A case study of conditional deep convolutional generative adversarial networks in machine fault diagnosis
    Jia Luo
    Jinying Huang
    Hongmei Li
    Journal of Intelligent Manufacturing, 2021, 32 : 407 - 425
  • [8] Conveyor-Belt Detection of Conditional Deep Convolutional Generative Adversarial Network
    Hao, Xiaoli
    Meng, Xiaojuan
    Zhang, Yueqin
    Xue, JinDong
    Xia, Jinyue
    CMC-COMPUTERS MATERIALS & CONTINUA, 2021, 69 (02): : 2671 - 2685
  • [9] Network intrusion detection based on conditional wasserstein variational autoencoder with generative adversarial network and one-dimensional convolutional neural networks
    Jiaxing He
    Xiaodan Wang
    Yafei Song
    Qian Xiang
    Chen Chen
    Applied Intelligence, 2023, 53 : 12416 - 12436
  • [10] Network intrusion detection based on conditional wasserstein variational autoencoder with generative adversarial network and one-dimensional convolutional neural networks
    He, Jiaxing
    Wang, Xiaodan
    Song, Yafei
    Xiang, Qian
    Chen, Chen
    APPLIED INTELLIGENCE, 2023, 53 (10) : 12416 - 12436