Coefficient bounds for biholomorphic mappings which have a parametric representation

被引:10
|
作者
Xu, Qing-Hua [1 ]
Liu, Tai-Shun [2 ]
机构
[1] JiangXi Normal Univ, Coll Math & Informat Sci, Nanchang 330027, Peoples R China
[2] Huzhou Teachers Coll, Dept Math, Huzhou 31300, Peoples R China
关键词
Loewner chain; g-Loewner chain; Coefficient bounds; SUFFRIDGE EXTENSION OPERATOR; COMPLEX-VARIABLES; UNIVALENT MAPPINGS; STARLIKE MAPPINGS; GROWTH THEOREMS; LOEWNER CHAINS;
D O I
10.1016/j.jmaa.2009.01.056
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let B be the unit ball in C-n with respect to an arbitrary norm parallel to (center dot) parallel to and let f (z, t) be a g-Loewner chain such that z = 0 is a zero of order k + 1 of e(-t) f (z, t) - z for each t >= 0. In this paper, the authors obtain coefficient bounds of mappings in S-g,k+1(0) (B). These results generalize the related works of Hamada, Honda and Kohr. (c) 2009 Elsevier Inc. All rights reserved.
引用
收藏
页码:126 / 130
页数:5
相关论文
共 15 条