Global nonexistence of solutions with positive initial energy for a class of wave equations

被引:12
作者
Liu, Wenjun [1 ,2 ]
Wang, Mingxin [2 ]
机构
[1] Nanjing Univ Informat Sci & Technol, Coll Math & Phys, Nanjing 210044, Peoples R China
[2] Southeast Univ, Dept Math, Nanjing 210096, Peoples R China
基金
中国国家自然科学基金;
关键词
global nonexistence; strong damping; nonlinear source; wave equation; positive initial energy; LINEAR EVOLUTION-EQUATIONS; ASYMPTOTIC-BEHAVIOR; EXISTENCE; THEOREMS;
D O I
10.1002/mma.1054
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this study, we consider a class of wave equations with strong damping and source terms associated with initial and Dirichlet boundary conditions. We establish a blow up result for certain solutions with nonpositive initial energy as well as positive initial energy. This further improves the results by Yang (Math. Meth. Appl. Sci. 2002 25:825-833) and Messaoudi and Houari (Math. Meth. Appl. Sci. 2004; 27: 1687-1696). Copyright (C) 2008 John Wiley & Sons, Ltd.
引用
收藏
页码:594 / 605
页数:12
相关论文
共 27 条
[1]   ASYMPTOTIC-BEHAVIOR AND CHANGES OF PHASE IN ONE-DIMENSIONAL NON-LINEAR VISCOELASTICITY [J].
ANDREWS, G .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1982, 44 (02) :306-341
[2]   ON THE EXISTENCE OF SOLUTIONS TO THE EQUATION UTT = UXXT + SIGMA-(UX)X [J].
ANDREWS, G .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1980, 35 (02) :200-231
[3]  
ANG DD, 1988, SIAM J MATH ANAL, V19, P337, DOI 10.1137/0519024
[4]  
[Anonymous], 1980, OSAKA J MATH
[5]  
Ball J.M., 1978, Nonlinear Evolution Equations, P189, DOI 10.1016/B978-0-12-195250-1.50015-1
[6]   Principal eigenvalue of the p-Laplacian in RN [J].
Furusho, Y ;
Murata, Y .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1997, 30 (08) :4749-4756
[7]   EXISTENCE OF A SOLUTION OF THE WAVE-EQUATION WITH NONLINEAR DAMPING AND SOURCE TERMS [J].
GEORGIEV, V ;
TODOROVA, G .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1994, 109 (02) :295-308
[8]   BLOW-UP THEOREMS FOR NONLINEAR WAVE-EQUATIONS [J].
GLASSEY, RT .
MATHEMATISCHE ZEITSCHRIFT, 1973, 132 (03) :183-203
[9]   DECAY-ESTIMATES FOR SOME SEMILINEAR DAMPED HYPERBOLIC PROBLEMS [J].
HARAUX, A ;
ZUAZUA, E .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1988, 100 (02) :191-206
[10]   GLOBAL EXISTENCE AND EXPONENTIAL STABILITY OF SMALL SOLUTIONS TO NONLINEAR VISCOELASTICITY [J].
KAWASHIMA, S ;
SHIBATA, Y .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1992, 148 (01) :189-208