Cancellation in additively twisted sums on GL(n)

被引:67
作者
Miller, Stephen D. [1 ]
机构
[1] Hebrew Univ Jerusalem, Math Inst, IL-91904 Jerusalem, Israel
[2] Rutgers State Univ, Dept Math, Piscataway, NJ 08854 USA
关键词
D O I
10.1353/ajm.2006.0027
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In a previous paper with Schmid we considered the regularity of automorphic distributions for GL(2, R), and its connections to other topics in number theory and analysis. In this paper we turn to the higher rank setting, establishing the nontrivial bound Sigma(n <= T)a(n) e(2 pi i n alpha) = O-epsilon(T-3/(4+epsilon)) uniformly in alpha is an element of R, for a(n) the coefficients of the L-function of a cusp form on GL(3, Z)\GL(3, R). We also derive an equivalence (Theorem 7.1) between analogous cancellation statements for cusp forms on GL(n, R), and the sizes of certain period integrals. These in turn imply estimates for the second moment of cusp form L-functions.
引用
收藏
页码:699 / 729
页数:31
相关论文
共 36 条
[1]  
[Anonymous], 1984, CONCISE INTRO THEORY
[2]  
BUMP D, 1984, LECT NOTES MATH, V1083, pR1
[3]  
BUMP D, 1989, NUMBER THEORY TRACE, P49
[4]   EXPONENTIAL SUMS ASSOCIATED WITH ALGEBRAIC NUMBER FIELDS [J].
CHANDRASEKHARAN, K ;
NARASIMHAN, R .
COMMENTARII MATHEMATICI HELVETICI, 1979, 54 (04) :523-561
[5]   THE APPROXIMATE FUNCTIONAL EQUATION FOR A CLASS OF ZETA-FUNCTIONS [J].
CHANDRASEKHARAN, K ;
NARASIMHAN, R .
MATHEMATISCHE ANNALEN, 1963, 152 (01) :30-64
[6]   Some problems of diophantine approximation (I). [J].
Chowla, SD .
MATHEMATISCHE ZEITSCHRIFT, 1931, 33 :544-563
[7]  
Deligne P., 1974, I HAUTES ETUDES SCI, V43, P273
[8]   ZEROS OF L-FUNCTIONS ATTACHED TO MAASS FORMS [J].
EPSTEIN, C ;
HAFNER, JL ;
SARNAK, P .
MATHEMATISCHE ZEITSCHRIFT, 1985, 190 (01) :113-128
[9]  
Erdos P., 1948, J INDIAN MATH SOC, V12, P67
[10]  
Gelbart S., 1988, Perspectives in Mathematics, V6