Enhancement of energy harvesting performance for a piezoelectric cantilever using a spring mass suspension

被引:0
作者
Li, Chuan [1 ,2 ]
Hong, Daewoong [2 ]
Kwon, Kwang-Ho [2 ]
Jeong, Jaehwa [2 ]
机构
[1] Chongqing Technol & Business Univ, Sch Mech Engn, Chongqing 400067, Peoples R China
[2] Korea Univ, Dept Control & Instrumentat Engn, Sejong City 339700, South Korea
基金
新加坡国家研究基金会;
关键词
vibration; energy harvester; piezoelectric cantilever; broadband; power; OPTIMIZATION; POWER; BEAM; DESIGN;
D O I
暂无
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
A spring-mass suspension is proposed in this paper for enhancing vibration energy harvesting performances of piezoelectric cantilevers. The suspension is inserted between the piezoelectric cantilever and the vibration base. Two key criteria are proposed for designing the present structure towards simultaneous broadband and intensive energy harvesting. On the one hand, the natural frequency of the spring-mass suspension is tuned close to that of the piezoelectric beam. On the other hand, the inertial mass of the suspension is chosen much greater than the cantilever mass. The amplification of the dynamic response over a broader frequency band of the proposed configuration is validated via vibration analyses. A prototype device in accordance with the proposed design is subsequently developed for experimental evaluations. The present structure widens the effective bandwidth from 7.6 Hz to 22.2 Hz, while increasing the maximum harvested power from 0.01436 mW/g to 0.4406 mW/g compared to the conventional cantilevered energy harvester.
引用
收藏
页码:116 / 125
页数:10
相关论文
共 22 条
[1]   Modeling and analysis of a bimorph piezoelectric cantilever beam for voltage generation [J].
Ajitsaria, J. ;
Choe, S. Y. ;
Shen, D. ;
Kim, D. J. .
SMART MATERIALS AND STRUCTURES, 2007, 16 (02) :447-454
[2]   Energy Harvester with a Dynamic Magnifier [J].
Aldraihem, O. ;
Baz, A. .
JOURNAL OF INTELLIGENT MATERIAL SYSTEMS AND STRUCTURES, 2011, 22 (06) :521-530
[3]   Study of Piezoelectric Energy Harvesting System Based on PZT [J].
Ambrosio, R. ;
Jimenez, A. ;
Mireles, J. ;
Moreno, M. ;
Monfil, K. ;
Heredia, H. .
INTEGRATED FERROELECTRICS, 2011, 126 :77-86
[4]   Electromagnetic vibration energy harvesting device optimization by synchronous energy extraction [J].
Arroyo, E. ;
Badel, A. .
SENSORS AND ACTUATORS A-PHYSICAL, 2011, 171 (02) :266-273
[5]   Beam Shape Optimization for Power Harvesting [J].
Dietl, John M. ;
Garcia, Ephrahim .
JOURNAL OF INTELLIGENT MATERIAL SYSTEMS AND STRUCTURES, 2010, 21 (06) :633-646
[6]   A distributed parameter electromechanical model for cantilevered piezoelectric energy harvesters [J].
Erturk, A. ;
Inman, D. J. .
JOURNAL OF VIBRATION AND ACOUSTICS-TRANSACTIONS OF THE ASME, 2008, 130 (04)
[7]   Design of a 2DOF Vibrational Energy Harvesting Device [J].
Jang, S. -J. ;
Rustighi, E. ;
Brennan, M. J. ;
Lee, Y. P. ;
Jung, H. -J. .
JOURNAL OF INTELLIGENT MATERIAL SYSTEMS AND STRUCTURES, 2011, 22 (05) :443-448
[8]   Broadband energy-harvesting using a two degree-of-freedom vibrating body [J].
Kim, In-Ho ;
Jung, Hyung-Jo ;
Lee, Bo Mi ;
Jang, Seon-Jun .
APPLIED PHYSICS LETTERS, 2011, 98 (21)
[9]   Tuned mass absorbers on damped structures under random load [J].
Krenk, Steen ;
Hogsberg, Jan .
PROBABILISTIC ENGINEERING MECHANICS, 2008, 23 (04) :408-415
[10]   Effectiveness of using tuned-mass dampers in reducing seismic risk [J].
Lee, C. S. ;
Goda, K. ;
Hong, H. P. .
STRUCTURE AND INFRASTRUCTURE ENGINEERING, 2012, 8 (02) :141-156