BASIC PRINCIPLES OF VIRTUAL ELEMENT METHODS

被引:1036
作者
da Veiga, L. Beirao [1 ]
Brezzi, F. [2 ,3 ,4 ]
Cangiani, A. [5 ]
Manzini, G. [2 ,3 ]
Marini, L. D. [3 ,6 ]
Russo, A. [7 ]
机构
[1] Univ Milano Statale, Dipartimento Matemat, I-20133 Milan, Italy
[2] IUSS Pavia, I-27100 Pavia, Italy
[3] CNR, IMATI, I-27100 Pavia, Italy
[4] King Abdulaziz Univ, Dept Math, Jeddah 21589, Saudi Arabia
[5] Univ Leicester, Dept Math, Leicester LE1 7RH, Leics, England
[6] Univ Pavia, Dipartimento Matemat, I-27100 Pavia, Italy
[7] Univ Milano Bicocca, Dipartimento Matemat & Applicaz, I-20153 Milan, Italy
关键词
Virtual elements; mimetic finite differences; FINITE-DIFFERENCE METHOD; MIMETIC DISCRETIZATIONS; CONVERGENCE ANALYSIS; DIFFUSION-PROBLEMS;
D O I
10.1142/S0218202512500492
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We present, on the simplest possible case, what we consider as the very basic features of the (brand new) virtual element method. As the readers will easily recognize, the virtual element method could easily be regarded as the ultimate evolution of the mimetic finite differences approach. However, in their last step they became so close to the traditional finite elements that we decided to use a different perspective and a different name. Now the virtual element spaces are just like the usual finite element spaces with the addition of suitable non-polynomial functions. This is far from being a new idea. See for instance the very early approach of E. Wachspress [A Rational Finite Element Basic (Academic Press, 1975)] or the more recent overview of T.-P. Fries and T. Belytschko [The extended/generalized finite element method: An overview of the method and its applications, Int. J. Numer. Methods Engrg. 84 (2010) 253-304]. The novelty here is to take the spaces and the degrees of freedom in such a way that the elementary stiffness matrix can be computed without actually computing these non-polynomial functions, but just using the degrees of freedom. In doing that we can easily deal with complicated element geometries and/or higher-order continuity conditions (like C-1, C-2, etc.). The idea is quite general, and could be applied to a number of different situations and problems. Here however we want to be as clear as possible, and to present the simplest possible case that still gives the flavor of the whole idea.
引用
收藏
页码:199 / 214
页数:16
相关论文
共 32 条
[11]   MIMETIC FINITE DIFFERENCES FOR ELLIPTIC PROBLEMS [J].
Brezzi, Franco ;
Buffa, Annalisa ;
Lipnikov, Konstantin .
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2009, 43 (02) :277-295
[12]   A tensor artificial viscosity using a mimetic finite difference algorithm [J].
Campbell, JC ;
Shashkov, MJ .
JOURNAL OF COMPUTATIONAL PHYSICS, 2001, 172 (02) :739-765
[13]   Flux reconstruction and solution post-processing in mimetic finite difference methods [J].
Cangiani, Andrea ;
Manzini, Gianmarco .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2008, 197 (9-12) :933-945
[14]   CONVERGENCE ANALYSIS OF THE MIMETIC FINITE DIFFERENCE METHOD FOR ELLIPTIC PROBLEMS [J].
Cangiani, Andrea ;
Manzini, Gianmarco ;
Russo, Alessandro .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2009, 47 (04) :2612-2637
[15]  
CIARLET P. G., 2002, Classics in Appl. Math., V40
[16]   A residual based error estimator for the Mimetic Finite Difference method [J].
da Veiga, L. Beirao .
NUMERISCHE MATHEMATIK, 2008, 108 (03) :387-406
[17]   ARBITRARY-ORDER NODAL MIMETIC DISCRETIZATIONS OF ELLIPTIC PROBLEMS ON POLYGONAL MESHES [J].
Da Veiga, L. Beirao ;
Lipnikov, K. ;
Manzini, G. .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2011, 49 (05) :1737-1760
[18]   Convergence analysis of the high-order mimetic finite difference method [J].
da Veiga, L. Beirao ;
Lipnikov, K. ;
Manzini, G. .
NUMERISCHE MATHEMATIK, 2009, 113 (03) :325-356
[19]   A MIMETIC DISCRETIZATION METHOD FOR LINEAR ELASTICITY [J].
Da Veiga, Lourenco Beirao .
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2010, 44 (02) :231-250
[20]   A HIGHER-ORDER FORMULATION OF THE MIMETIC FINITE DIFFERENCE METHOD [J].
da Veiga, Lourenco Beirao ;
Manzini, Gianmarco .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2008, 31 (01) :732-760