Bioconversion of lignocellulose: inhibitors and detoxification

被引:1049
作者
Jonsson, Leif J. [1 ]
Alriksson, Bjorn [2 ]
Nilvebrant, Nils-Olof [3 ]
机构
[1] Umea Univ, Dept Chem, SE-90187 Umea, Sweden
[2] Processum Biorefinery Initiat AB, SE-89122 Omskoldsvik, Sweden
[3] Borregaard, N-1701 Sarpsborg, Norway
基金
瑞典研究理事会;
关键词
STEAM-EXPLODED POPLAR; SACCHAROMYCES-CEREVISIAE; ETHANOL-PRODUCTION; FERMENTATION INHIBITORS; BIOETHANOL PRODUCTION; ENZYMATIC-HYDROLYSIS; PICHIA-STIPITIS; WHEAT-STRAW; CORN STOVER; BIOLOGICAL DETOXIFICATION;
D O I
10.1186/1754-6834-6-16
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Bioconversion of lignocellulose by microbial fermentation is typically preceded by an acidic thermochemical pretreatment step designed to facilitate enzymatic hydrolysis of cellulose. Substances formed during the pretreatment of the lignocellulosic feedstock inhibit enzymatic hydrolysis as well as microbial fermentation steps. This review focuses on inhibitors from lignocellulosic feedstocks and how conditioning of slurries and hydrolysates can be used to alleviate inhibition problems. Novel developments in the area include chemical in-situ detoxification by using reducing agents, and methods that improve the performance of both enzymatic and microbial biocatalysts.
引用
收藏
页数:10
相关论文
共 105 条
[1]   Biochemical aspects of stuck and sluggish fermentation in grape must [J].
Alexandre, H ;
Charpentier, C .
JOURNAL OF INDUSTRIAL MICROBIOLOGY & BIOTECHNOLOGY, 1998, 20 (01) :20-27
[2]   Ammonium hydroxide detoxification of spruce acid hydrolysates [J].
Alriksson, B ;
Horváth, IS ;
Sjöde, A ;
Nilvebrant, NO ;
Jönsson, LJ .
APPLIED BIOCHEMISTRY AND BIOTECHNOLOGY, 2005, 121 :911-922
[3]   Optimal conditions for alkaline detoxification of dilute-acid lignocellulose hydrolysates [J].
Alriksson, Bjorn ;
Sjode, Anders ;
Nilvebrant, Nils-Olof ;
Jonsson, Leif J. .
APPLIED BIOCHEMISTRY AND BIOTECHNOLOGY, 2006, 130 (1-3) :599-611
[4]   Improving the fermentability of enzymatic hydrolysates of lignocellulose through chemical in-situ detoxification with reducing agents [J].
Alriksson, Bjorn ;
Cavka, Adnan ;
Jonsson, Leif J. .
BIORESOURCE TECHNOLOGY, 2011, 102 (02) :1254-1263
[5]   Overexpression of Saccharomyces cerevisiae transcription factor and multidrug resistance genes conveys enhanced resistance to lignocellulose-derived fermentation inhibitors [J].
Alriksson, Bjorn ;
Horvath, Ilona Sarvari ;
Jonsson, Leif J. .
PROCESS BIOCHEMISTRY, 2010, 45 (02) :264-271
[6]   IDENTIFICATION OF AROMATIC MONOMERS IN STEAM-EXPLODED POPLAR AND THEIR INFLUENCES ON ETHANOL FERMENTATION BY SACCHAROMYCES-CEREVISIAE [J].
ANDO, S ;
ARAI, I ;
KIYOTO, K ;
HANAI, S .
JOURNAL OF FERMENTATION TECHNOLOGY, 1986, 64 (06) :567-570
[7]   Reactor design for minimizing product inhibition during enzymatic lignocellulose hydrolysis: I. Significance and mechanism of cellobiose and glucose inhibition on cellulolytic enzymes [J].
Andric, Pavle ;
Meyer, Anne S. ;
Jensen, Peter A. ;
Dam-Johansen, Kim .
BIOTECHNOLOGY ADVANCES, 2010, 28 (03) :308-324
[8]   Cellulose accessibility limits the effectiveness of minimum cellulase loading on the efficient hydrolysis of pretreated lignocellulosic substrates [J].
Arantes, Valdeir ;
Saddler, Jack N. .
BIOTECHNOLOGY FOR BIOFUELS, 2011, 4
[9]   Access to cellulose limits the efficiency of enzymatic hydrolysis: the role of amorphogenesis [J].
Arantes, Valdeir ;
Saddler, Jack N. .
BIOTECHNOLOGY FOR BIOFUELS, 2010, 3
[10]   Enzymatic kinetic of cellulose hydrolysis - Inhibition by ethanol and cellobiose [J].
Bezerra, RMF ;
Dias, AA .
APPLIED BIOCHEMISTRY AND BIOTECHNOLOGY, 2005, 126 (01) :49-59