共 50 条
The rate of escape for random walks on polycyclic and metabelian groups
被引:3
|作者:
Thompson, Russ
[1
]
机构:
[1] Cornell Univ, Dept Math, Ithaca, NY 14853 USA
来源:
ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES
|
2013年
/
49卷
/
01期
关键词:
Law of iterated logarithm;
Metabelian group;
Polycyclic group;
Random walk;
Rate of escape;
Abelian sandpile;
Solvable group;
Subgroup distortion;
WREATH-PRODUCTS;
DISTORTION;
D O I:
10.1214/11-AIHP455
中图分类号:
O21 [概率论与数理统计];
C8 [统计学];
学科分类号:
020208 ;
070103 ;
0714 ;
摘要:
We use subgroup distortion to determine the rate of escape of a simple random walk on a class of polycyclic groups, and we show that the rate of escape is invariant under changes of generating set for these groups. For metabelian groups, we define a stronger form of subgroup distortion which applies to non-finitely generated subgroups. Under this hypothesis, we compute the rate of escape for certain random walks on some abelian-by-cyclic groups via a comparison to the toppling of a dissipative abelian sandpile.
引用
收藏
页码:270 / 287
页数:18
相关论文