The rate of escape for random walks on polycyclic and metabelian groups

被引:3
|
作者
Thompson, Russ [1 ]
机构
[1] Cornell Univ, Dept Math, Ithaca, NY 14853 USA
来源
ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES | 2013年 / 49卷 / 01期
关键词
Law of iterated logarithm; Metabelian group; Polycyclic group; Random walk; Rate of escape; Abelian sandpile; Solvable group; Subgroup distortion; WREATH-PRODUCTS; DISTORTION;
D O I
10.1214/11-AIHP455
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We use subgroup distortion to determine the rate of escape of a simple random walk on a class of polycyclic groups, and we show that the rate of escape is invariant under changes of generating set for these groups. For metabelian groups, we define a stronger form of subgroup distortion which applies to non-finitely generated subgroups. Under this hypothesis, we compute the rate of escape for certain random walks on some abelian-by-cyclic groups via a comparison to the toppling of a dissipative abelian sandpile.
引用
收藏
页码:270 / 287
页数:18
相关论文
共 50 条