The fractional discrete cosine transform

被引:66
作者
Cariolaro, G [1 ]
Erseghe, T [1 ]
Kraniauskas, P [1 ]
机构
[1] Univ Padua, Dipartimento Elettron & Informat, Padua, Italy
关键词
D O I
10.1109/78.992138
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The extension of the Fourier transform operator to a fractional power has received much attention in signal theory and is finding attractive applications. The paper introduces and develops the fractional discrete cosine transform (DCT) on the same lines, discussing multiplicity and computational aspects. Similarities and differences with respect to the fractional Fourier transform are pointed out.
引用
收藏
页码:902 / 911
页数:10
相关论文
共 25 条
[1]  
[Anonymous], 1997, MPEG VIDEO COMPRESSI
[2]  
[Anonymous], 1960, THEORY MATRICES
[3]   The discrete harmonic oscillator, Harper's equation, and the discrete fractional Fourier transform [J].
Barker, L ;
Candan, C ;
Hakioglu, T ;
Kutay, MA ;
Ozaktas, HM .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2000, 33 (11) :2209-2222
[4]  
Bellman R., 1970, INTRO MATRIX ANAL
[5]   FRACTIONAL FOURIER-TRANSFORMS AND IMAGING [J].
BERNARDO, LM ;
SOARES, ODD .
JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 1994, 11 (10) :2622-2626
[6]   The discrete fractional Fourier transform [J].
Candan, Ç ;
Kutay, MA ;
Ozaktas, HM .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2000, 48 (05) :1329-1337
[7]   A unified framework for the fractional Fourier transform [J].
Cariolaro, G ;
Erseghe, T ;
Kraniauskas, P ;
Laurenti, N .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 1998, 46 (12) :3206-3219
[8]   Multiplicity of fractional Fourier transforms and their relationships [J].
Cariolaro, G ;
Erseghe, T ;
Kraniauskas, P ;
Laurenti, N .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2000, 48 (01) :227-241
[9]   EIGENVECTORS AND FUNCTIONS OF THE DISCRETE FOURIER-TRANSFORM [J].
DICKINSON, BW ;
STEIGLITZ, K .
IEEE TRANSACTIONS ON ACOUSTICS SPEECH AND SIGNAL PROCESSING, 1982, 30 (01) :25-31
[10]  
Haskell B. G., 1997, DIGITAL VIDEO INTRO