Basic theory of fractional differential equations

被引:824
作者
Lakshmikantham, V. [1 ]
Vatsala, A. S. [2 ]
机构
[1] Florida Inst Technol, Dept Math Sci, Melbourne, FL 32901 USA
[2] Univ Louisiana Lafayette, Dept Math, Lafayette, LA 70504 USA
关键词
fractional differential equations; basic theory of existence; comparison result;
D O I
10.1016/j.na.2007.08.042
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
in this paper, the basic theory for the initial value problem of fractional differential equations involving Riemann-Liouville differential operators is discussed employing the classical approach. The theory of inequalities, local existence, extremal solutions, comparison result and global existence of solutions are considered. (C) 2007 Elsevier Ltd. All rights reserved.
引用
收藏
页码:2677 / 2682
页数:6
相关论文
共 10 条
[1]  
[Anonymous], GROUP PROCESSES INTE
[2]   LINEAR MODELS OF DISSIPATION WHOSE Q IS ALMOST FREQUENCY INDEPENDENT-2 [J].
CAPUTO, M .
GEOPHYSICAL JOURNAL OF THE ROYAL ASTRONOMICAL SOCIETY, 1967, 13 (05) :529-&
[3]   Multi-order fractional differential equations and their numerical solution [J].
Diethelm, K ;
Ford, NJ .
APPLIED MATHEMATICS AND COMPUTATION, 2004, 154 (03) :621-640
[4]   Analysis of fractional differential equations [J].
Diethelm, K ;
Ford, NJ .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2002, 265 (02) :229-248
[5]  
GLOCKLE WG, 1995, BIOPHYS J, V68, P46, DOI 10.1016/S0006-3495(95)80157-8
[6]  
Kiryakova, 1994, PITMAN RES NOTES MAT, P301
[7]  
Lakshmikantham V., 1969, DIFFERENTIAL INTEGRA, V1
[8]   RELAXATION IN FILLED POLYMERS - A FRACTIONAL CALCULUS APPROACH [J].
METZLER, R ;
SCHICK, W ;
KILIAN, HG ;
NONNENMACHER, TF .
JOURNAL OF CHEMICAL PHYSICS, 1995, 103 (16) :7180-7186
[9]  
Podlubny I., 1999, Fractional Di ff erential Equations
[10]  
Samko SG., 1993, Fractional Integral and Derivatives: Theory and Applications