The Secrets of Salient Object Segmentation

被引:1079
作者
Li, Yin [1 ]
Hou, Xiaodi [2 ]
Koch, Christof
Rehg, James M. [1 ]
Yuille, Alan L. [3 ]
机构
[1] Georgia Tech, Atlanta, GA USA
[2] CALTECH, Pasadena, CA 91125 USA
[3] Univ Calif Los Angeles, Los Angeles, CA 90024 USA
来源
2014 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR) | 2014年
关键词
D O I
10.1109/CVPR.2014.43
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper we provide an extensive evaluation of fixation prediction and salient object segmentation algorithms as well as statistics of major datasets. Our analysis identifies serious design flaws of existing salient object benchmarks, called the dataset design bias, by over emphasising the stereotypical concepts of saliency. The dataset design bias does not only create the discomforting disconnection between fixations and salient object segmentation, but also misleads the algorithm designing. Based on our analysis, we propose a new high quality dataset that offers both fixation and salient object segmentation ground-truth. With fixations and salient object being presented simultaneously, we are able to bridge the gap between fixations and salient objects, and propose a novel method for salient object segmentation. Finally, we report significant benchmark progress on 3 existing datasets of segmenting salient objects.
引用
收藏
页码:280 / 287
页数:8
相关论文
共 26 条
[21]  
Li J., 2013, TPAMI
[22]  
Liu T., 2007, CVPR
[23]  
Perazzi F, 2012, PROC CVPR IEEE, P733, DOI 10.1109/CVPR.2012.6247743
[24]   Visual correlates of fixation selection: effects of scale and time [J].
Tatler, BW ;
Baddeley, RJ ;
Gilchrist, ID .
VISION RESEARCH, 2005, 45 (05) :643-659
[25]  
Torralba A, 2011, PROC CVPR IEEE, P1521, DOI 10.1109/CVPR.2011.5995347
[26]   SUN: A Bayesian framework for saliency using natural statistics [J].
Zhang, Lingyun ;
Tong, Matthew H. ;
Marks, Tim K. ;
Shan, Honghao ;
Cottrell, Garrison W. .
JOURNAL OF VISION, 2008, 8 (07)