Estimating Ground-Level PM2.5 Using Fine-Resolution Satellite Data in the Megacity of Beijing, China

被引:41
作者
Li, Rong [1 ,2 ]
Gong, Jianhua [1 ,3 ]
Chen, Liangfu [1 ]
Wang, Zifeng [1 ]
机构
[1] Chinese Acad Sci, State Key Lab Remote Sensing Sci, Inst Remote Sensing & Digital Earth, Beijing 100101, Peoples R China
[2] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
[3] Zhejiang CAS Applicat Ctr Geoinformat, Jiaxing 314100, Peoples R China
基金
美国国家科学基金会;
关键词
Particulate matter; Satellite remote sensing; Statistical models; Air quality; AEROSOL OPTICAL DEPTH; PARTICULATE MATTER CONCENTRATIONS; IMAGING SPECTRORADIOMETER MODIS; AIR-QUALITY ASSESSMENT; UNITED-STATES; CALIBRATION APPROACH; POLLUTION; RETRIEVALS; LAND; PRODUCTS;
D O I
10.4209/aaqr.2015.01.0009
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Estimating ground-level PM2.5 in urban areas from satellite-retrieved AOD data is limited because of the coarse resolution of the data. The spatial resolution of recent MODIS Collection 6 aerosol data has increased from 10 km to 3 km. Taking advantage of this new AOD dataset, we used a mixed effects model to calibrate the day-to-day relationship between satellite AOD and ground-level PM2.5 concentrations. Regional daily PM2.5 concentrations were estimated by the AOD from March 1, 2013, to February 28, 2014, in the megacity of Beijing. Compared with the simple linear regression model, the accuracy of the PM2.5 prediction improved significantly, with an R-2 of 0.796 and a root mean squared error of 16.04 mu g/m(3). The results showed high PM2.5 concentrations in the intra-urban region of Beijing because of local emissions. The PM2.5 concentrations were relatively low in the northern rural area but high in the southern rural area, which was close to the industrial sector in Hebei Province. We found that the 3 km AOD produces detailed spatial variability in the Beijing area but introduces somewhat large biases due to missing AOD pixels.
引用
收藏
页码:1347 / 1356
页数:10
相关论文
共 35 条
[1]   Global monitoring of air pollution over land from the Earth Observing System-Terra Moderate Resolution Imaging Spectroradiometer (MODIS) [J].
Chu, DA ;
Kaufman, YJ ;
Zibordi, G ;
Chern, JD ;
Mao, J ;
Li, CC ;
Holben, BN .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2003, 108 (D21)
[2]   A critical assessment of high-resolution aerosol optical depth retrievals for fine particulate matter predictions [J].
Chudnovsky, A. ;
Tang, C. ;
Lyapustin, A. ;
Wang, Y. ;
Schwartz, J. ;
Koutrakis, P. .
ATMOSPHERIC CHEMISTRY AND PHYSICS, 2013, 13 (21) :10907-10917
[3]   Qualitative and quantitative evaluation of MODIS satellite sensor data for regional and urban scale air quality [J].
Engel-Cox, JA ;
Holloman, CH ;
Coutant, BW ;
Hoff, RM .
ATMOSPHERIC ENVIRONMENT, 2004, 38 (16) :2495-2509
[4]   Satellite remote sensing of fine particulate matter (PM2.5) air quality over Beijing using MODIS [J].
Guo, Yangjie ;
Feng, Nan ;
Christopher, Sundar A. ;
Kang, Ping ;
Zhan, F. Benjamin ;
Hong, Song .
INTERNATIONAL JOURNAL OF REMOTE SENSING, 2014, 35 (17) :6522-6544
[5]   An evaluation of Terra-MODIS sampling for monthly and annual particulate matter air quality assessment over the Southeastern United States [J].
Gupta, Pawan ;
Christopher, Sundar A. .
ATMOSPHERIC ENVIRONMENT, 2008, 42 (26) :6465-6471
[6]   Satellite remote sensing of particulate matter and air quality assessment over global cities [J].
Gupta, Pawan ;
Christopher, Sundar A. ;
Wang, Jun ;
Gehrig, Robert ;
Lee, Yc ;
Kumar, Naresh .
ATMOSPHERIC ENVIRONMENT, 2006, 40 (30) :5880-5892
[7]   Particulate matter air quality assessment using integrated surface, satellite, and meteorological products: 2. A neural network approach [J].
Gupta, Pawan ;
Christopher, Sundar A. .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2009, 114
[8]   Particulate matter air quality assessment using integrated surface, satellite, and meteorological products: Multiple regression approach [J].
Gupta, Pawan ;
Christopher, Sundar A. .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2009, 114
[9]   Estimating ground-level PM2.5 concentrations in the Southeastern United States using MAIAC AOD retrievals and a two-stage model [J].
Hu, Xuefei ;
Waller, Lance A. ;
Lyapustin, Alexei ;
Wang, Yujie ;
Al-Hamdan, Mohammad Z. ;
Crosson, William L. ;
Estes, Maurice G., Jr. ;
Estes, Sue M. ;
Quattrochi, Dale A. ;
Puttaswamy, Sweta Jinnagara ;
Liu, Yang .
REMOTE SENSING OF ENVIRONMENT, 2014, 140 :220-232
[10]   Estimating ground-level PM2.5 concentrations in the southeastern US using geographically weighted regression [J].
Hu, Xuefei ;
Waller, Lance A. ;
Al-Hamdan, Mohammad Z. ;
Crosson, William L. ;
Estes, Maurice G., Jr. ;
Estes, Sue M. ;
Quattrochi, Dale A. ;
Sarnat, Jeremy A. ;
Liu, Yang .
ENVIRONMENTAL RESEARCH, 2013, 121 :1-10