Research on the SLAM of Mobile Robot Based on Particle Filter Method

被引:0
作者
Wei, Yuhai [1 ]
Zhang, Hui [1 ]
Deng, Guang [1 ]
Zhong, Hang [2 ]
Liu, Li [2 ]
机构
[1] Changsha Univ Sci & Technol, Coll Elect & Informat Engn, Changsha 410012, Peoples R China
[2] Hunan Univ, Coll Elect & Informat Engn, Changsha 410082, Peoples R China
来源
2019 9TH IEEE ANNUAL INTERNATIONAL CONFERENCE ON CYBER TECHNOLOGY IN AUTOMATION, CONTROL, AND INTELLIGENT SYSTEMS (IEEE-CYBER 2019) | 2019年
基金
国家重点研发计划; 中国国家自然科学基金;
关键词
SLAM; Path planning; Lidar; Mobile robot; SIMULTANEOUS LOCALIZATION; NAVIGATION;
D O I
10.1109/cyber46603.2019.9066616
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper mainly studies mobile robots under ROS (Robot Operating System), combined with lidar and odometer information collection, to solve the indoor robot SLAM (Simultaneous Localization and Mapping) and path planning technology problems. For this problem, this paper solves this problem based on ROS and mobile robot. In order to improve the computational efficiency and positioning accuracy of the robot in SLAM, SALM algorithm based on particle filter is adopted in this paper to complete the positioning and map creation functions of the robot in the unknown environment. At the same time, the path planning algorithm provided by ROS navigation function package is used to complete the navigation of the robot in the global map of the known environment, and the obstacle avoidance function of local map. The experimental results show that this technology can construct high -precision two-dimensional grid map and realize high -precision positioning and optimal path planning of the robot.
引用
收藏
页码:1640 / 1645
页数:6
相关论文
共 18 条
[1]  
Agarwal Saurav, 2017, 2017 IEEE International Conference on Robotics and Automation (ICRA), P6307, DOI 10.1109/ICRA.2017.7989746
[2]   Robust Incremental SLAM Under Constrained Optimization Formulation [J].
Bai, Fang ;
Vidal-Calleja, Teresa ;
Huang, Shoudong .
IEEE ROBOTICS AND AUTOMATION LETTERS, 2018, 3 (02) :1207-1214
[3]  
Chen YX, 2017, CHIN AUTOM CONGR, P6418, DOI 10.1109/CAC.2017.8243934
[4]   Localization and Navigation for Autonomous Mobile Robots Using Petri Nets in Indoor Environments [J].
Da Mota, Francisco A. X. ;
Rocha, Matheus Xavier ;
Rodrigues, Joel J. P. C. ;
De Albuquerque, Victor Hugo C. ;
De Alexandria, Auzuir Ripardo .
IEEE ACCESS, 2018, 6 :31665-31676
[5]  
Hart S, 2015, IEEE INT CONF ROBOT, P6227, DOI 10.1109/ICRA.2015.7140073
[6]   Modeling Laser Intensities For Simultaneous Localization and Mapping [J].
Khan, Sheraz ;
Wollherr, Dirk ;
Buss, Martin .
IEEE ROBOTICS AND AUTOMATION LETTERS, 2016, 1 (02) :692-699
[7]   Articulated Robot Motion for Simultaneous Localization and Mapping (ARM-SLAM) [J].
Klingensmith, Matthew ;
Sirinivasa, Siddartha S. ;
Kaess, Michael .
IEEE ROBOTICS AND AUTOMATION LETTERS, 2016, 1 (02) :1156-1163
[8]  
Krnjak A, 2015, IEEE INT CONF ROBOT, P2034, DOI 10.1109/ICRA.2015.7139465
[9]  
Ling YG, 2017, IEEE INT C INT ROBOT, P1374, DOI 10.1109/IROS.2017.8202316
[10]  
Park C, 2018, IEEE INT CONF ROBOT, P1206, DOI 10.1109/ICRA.2018.8462915