A sheaf of Boehmians

被引:2
作者
Beardsley, Jonathan [1 ]
Mikusinski, Piotr [2 ]
机构
[1] Johns Hopkins Univ, Dept Math, Baltimore, MD 21218 USA
[2] Univ Cent Florida, Dept Phys, Orlando, FL 32816 USA
关键词
Boehmians; convolution; convolution quotients; sheaf; MIKUSINSKI OPERATORS;
D O I
10.4064/ap107-3-5
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show that Boehmians defined over open sets of R-N constitute a sheaf. In particular, it is shown that such Boehmians satisfy the gluing property of sheaves over topological spaces.
引用
收藏
页码:293 / 307
页数:15
相关论文
共 11 条
[1]  
Antosik P., 1990, GEN FUNCTIONS CONVER
[2]   SUPPORT OF MIKUSINSKI OPERATORS [J].
BOEHME, TK .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1973, 176 (449) :319-334
[3]   MIKUSINSKI OPERATORS WITHOUT THE TITCHMARSH THEOREM [J].
GOLBERG, MA ;
BOWMAN, H .
AMERICAN MATHEMATICAL MONTHLY, 1980, 87 (07) :564-567
[4]  
Lutzen J., 1982, The prehistory of the theory of distributions
[5]   On flexibility of Boehmians [J].
Mikusinski, P .
INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS, 1996, 4 (1-2) :141-146
[6]  
Mikusinski P., 1983, Jpn. J. Math. New Ser, V9, P159, DOI [10.4099/math1924.9.159, DOI 10.4099/MATH1924.9.159]
[7]  
Mikusinski P., 1987, REND I MAT U TRIESTE, V19, P165
[8]   BOEHMIANS ON OPEN SETS [J].
MIKUSINSKIORLAN, P .
ACTA MATHEMATICA HUNGARICA, 1990, 55 (1-2) :63-73
[9]   WHAT IS A SHEAF [J].
SEEBACH, JA ;
SEEBACH, LA ;
STEEN, LA .
AMERICAN MATHEMATICAL MONTHLY, 1970, 77 (07) :681-&
[10]   CONVOLUTION MULTIPLIERS AND DISTRIBUTIONS [J].
SZAZ, A .
PACIFIC JOURNAL OF MATHEMATICS, 1975, 60 (02) :267-275