Analytical approximation of heat and mass transfer in MHD non-Newtonian nanofluid flow over a stretching sheet with convective surface boundary conditions

被引:10
作者
Freidoonimehr, Navid [1 ]
Rashidi, Mohammad Mehdi [2 ]
Momenpour, Mohammad Hossein [3 ]
Rashidi, Saman [3 ]
机构
[1] Islamic Azad Univ, Young Researchers & Elite Club, Hamedan Branch, Hamadan, Iran
[2] Shanghai Key Lab Vehicle Aerodynam & Vehicle Ther, 4800 Cao An Rd, Shanghai 201804, Peoples R China
[3] Ferdowsi Univ Mashhad, Dept Mech Engn, Mashhad, Iran
关键词
MHD; non-Newtonian fluid; nanofluid; stretching sheet; homotopy simulation; LAYER-FLOW; PERISTALTIC TRANSPORT; ENTROPY GENERATION; FLUID; RADIATION; DISK;
D O I
10.1142/S1793524517500085
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
The paper provides an analytical investigation, homotopy analysis method (HAM), of the heat and mass transfer for magnetohydrodynamic Oldroyd-B nanofluid flow over a stretching sheet in the presence of convective boundary condition. The PDE governing equations, which consist of equations of continuity, momentum, energy and nanoparticles, are converted to ordinary differential equations using similarity transformations. The current HAM solution demonstrates very good correlation with those of the previously published studies in the special cases. The influences of different flow physical parameters such as the Deborah numbers in terms of relaxation and retardation times (beta(1), beta(2)), magnetic parameter (M), Prandtl number (Pr), Brownian motion parameter (Nb), thermophoresis parameter (Nt), Lewis number (Le), and Biot number (Bi) on the fluid velocity component (f'(eta)), temperature distribution (theta(eta)) and concentration (phi(eta)) as well as the local Nusselt number (Nu(x)/Re-x(1/2)) and the local Sherwood number (Sh(x)/Re-x(1/2)) are discussed in detail.
引用
收藏
页数:25
相关论文
共 31 条
[1]   Numerical and analytical solutions for Falkner-Skan flow of MHD Oldroyd-B fluid [J].
Abbasbandy, S. ;
Hayat, T. ;
Alsaedi, A. ;
Rashidi, M. M. .
INTERNATIONAL JOURNAL OF NUMERICAL METHODS FOR HEAT & FLUID FLOW, 2014, 24 (02) :390-401
[2]   Peristaltic transport of magneto-nanoparticles submerged in water: Model for drug delivery system [J].
Abbasi, F. M. ;
Hayat, T. ;
Alsaedi, A. .
PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, 2015, 68 :123-132
[3]   Peristaltic transport of copper-water nanofluid saturating porous medium [J].
Abbasi, F. M. ;
Hayat, T. ;
Ahmad, B. .
PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, 2015, 67 :47-53
[4]   Analytical modeling of entropy generation for Casson nano-fluid flow induced by a stretching surface [J].
Abolbashari, Mohammad Hossein ;
Freidoonimehr, Navid ;
Nazari, Foad ;
Rashidi, Mohammad Mehdi .
ADVANCED POWDER TECHNOLOGY, 2015, 26 (02) :542-552
[5]   Entropy analysis for an unsteady MHD flow past a stretching permeable surface in nano-fluid [J].
Abolbashari, Mohammad Hossein ;
Freidoonimehr, Navid ;
Nazari, Foad ;
Rashidi, Mohammad Mehdi .
POWDER TECHNOLOGY, 2014, 267 :256-267
[6]  
[Anonymous], J BRAZILIAN SOC MECH
[7]   Boundary-layer flow of nanofluids over a moving surface in a flowing fluid [J].
Bachok, Norfifah ;
Ishak, Anuar ;
Pop, Ioan .
INTERNATIONAL JOURNAL OF THERMAL SCIENCES, 2010, 49 (09) :1663-1668
[8]   Finite element solution of mixed convection micropolar flow driven by a porous stretching sheet [J].
Bhargava, R ;
Kumar, L ;
Takhar, HS .
INTERNATIONAL JOURNAL OF ENGINEERING SCIENCE, 2003, 41 (18) :2161-2178
[9]  
Choi SUS., 1995, ASMEPUBLICATIONS FED, V231, P99, DOI DOI 10.1063/1.1341218
[10]  
Davidson P. A., 2002, An introduction to magnetohydrodynamics