(Q, T)-affine-periodic solutions and Pseudo (Q, T affine-periodic solutions for Dynamic Equations on Time Scales

被引:1
作者
Guo, Ruichao [1 ]
Jiang, Xiaomeng [2 ]
Wang, Hongren [3 ]
机构
[1] Jilin Univ Finance & Econ, Sch Appl Math, Changchun 130117, Jilin, Peoples R China
[2] Jilin Univ, Coll Math, Changchun 130012, Jilin, Peoples R China
[3] Jilin Normal Univ, Coll Math, Siping 136000, Jilin, Peoples R China
关键词
EXPONENTIAL DICHOTOMY; STABILITY QUESTION; EXISTENCE; SYSTEMS;
D O I
10.1155/2022/6874460
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The aim of this paper is to study the existence of (Q, T)-affine-periodic solutions for affine-periodic systems on time scales of the type x(Delta) (t) = A (t)x (t) + f (t) and x(Delta) (t) = A (t)x (t) + g (t, x (t)), t is an element of T, assuming that corresponding homogeneous equation of this system admits exponential dichotomy. The result is also extended to the case of pseudo (Q, T)-affine-periodic solutions. The main approaches are based on the Banach contraction mapping principle, but certain technical aspects on time scales are more complicated.
引用
收藏
页数:10
相关论文
共 38 条
[11]   The Kalman filter for linear systems on time scales [J].
Bohner, Martin ;
Wintz, Nick .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2013, 406 (02) :419-436
[12]   Mixed Equilibrium Problems and Anti-periodic Solutions for Nonlinear Evolution Equations [J].
Chadli, Ouayl ;
Ansari, Qamrul Hasan ;
Yao, Jen-Chih .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2016, 168 (02) :410-440
[13]   AFFINE-PERIODIC SOLUTIONS AND PSEUDO AFFINE-PERIODIC SOLUTIONS FOR DIFFERENTIAL EQUATIONS WITH EXPONENTIAL DICHOTOMY AND EXPONENTIAL TRICHOTOMY [J].
Cheng, Cheng ;
Huang, Fushan ;
Li, Yong .
JOURNAL OF APPLIED ANALYSIS AND COMPUTATION, 2016, 6 (04) :950-967
[14]   EXISTENCE AND ROUGHNESS OF THE EXPONENTIAL DICHOTOMY FOR SKEW-PRODUCT SEMIFLOW IN BANACH-SPACES [J].
CHOW, SN ;
LEIVA, H .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1995, 120 (02) :429-477
[15]  
Christiansen F. B., 1977, LECT NOTES ECOLOGICA, V20
[16]   Nonuniform dichotomy spectrum and reducibility for nonautonomous equations [J].
Chu, Jifeng ;
Liao, Fang-Fang ;
Siegmund, Stefan ;
Xia, Yonghui ;
Zhang, Weinian .
BULLETIN DES SCIENCES MATHEMATIQUES, 2015, 139 (05) :538-557
[17]  
Coppel W.A, 1978, DICHOTOMIES STABILIT, V629
[18]   Boundedness in a chemotaxis system with consumed chemoattractant and produced chemorepellent [J].
Frassu, Silvia ;
Viglialoro, Giuseppe .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2021, 213
[19]   LaSalle stationary oscillation theorem for affine periodic dynamic systems on time scales [J].
Guo, Ruichao ;
Jiang, Xiaomeng ;
Wang, Hongren .
BOUNDARY VALUE PROBLEMS, 2019, 2019 (1)
[20]  
Hilger S., 1988, THESIS U WUZBURG WUR